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In this work, we formulated the named entity recognition (NER) task as a multi-answer knowledge guided question-answer task

(KGQA) and showed that the knowledge guidance helps to achieve state-of-the-art results for 12 out of 18 biomedical NER datasets.

We prepended four different knowledge contexts – namely, entity types, questions, definitions, and examples – to the input text and

trained and tested BERT-based neural models on such input sequences from a combined dataset of the 18 different datasets. This novel

formulation of the task (a) improved named entity recognition by relating words having high similarity to the knowledge provided

through the attention mechanism, (b) reduced system confusion by limiting prediction to a single class for each input (i.e. B, I, O

only), (c) made detection of nested entities easier (d) enabled the models to jointly learn NER specific features from a large number of

datasets. We performed extensive experiments of this KGQA formulation on the biomedical datasets, and through the experiments we

showed how knowledge improved named entity recognition.
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1 INTRODUCTION

Named Entity Recognition (NER) has been considered as a relatively difficult task in biomedical domain due to the

stylized writing and domain-specific terminology. Moreover, the target entities are usually proper nouns or unregistered

words, with new words for drugs, diseases, and chemicals being generated frequently. Also, the same word phrases can

be recognized as different named entities in terms of current context [11, 26, 39]. For these reasons, external knowledge

can be helpful to guide automated systems to identify the entities in biomedical domain.

In general domain, use of extensive external knowledge has helped systems in multiple natural language tasks

like commonsense question answering [35, 41] and science question answering [23, 29]. In biomedical named entity

recognition, external knowledge can be about entities and their relations. Knowledge like entity-types along with their

definition and examples can allow attention mechanism to compare and learn to detect new entities, especially if the
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Fig. 1. The top block shows the traditional way of NER. In our method, we predict only B, I and O tags for a given context, i.e, only
red tags are predicted if the context is about entity Problem. O tags are not shown, but are predicted for non-answer words.

entity is newly generated and has infrequent mentions in common biomedical texts. Apart from the use of external

knowledge, framing an NLP task as a question answering task can lead to better performance [28]. Motivated by this

approach, we hypothesize that a Knowledge guided QA framework may be helpful in biomedical NER.

In this paper, we focus on NER in biomedical text and we test our hypothesis using different kinds of knowledge. The

ways of expressing knowledge include asking a question about the entity, giving the entity type, providing a definition

of the entity type and mentioning some examples of the entity types, as seen in Figure 1.

Figure 1 also shows, how traditional NER systems formulate the problem as a classification task. This traditional task

formulation leads to the following challenges: (a) labelling error, i.e., even though a system is able to identify the location

of an entity correctly, it fails to predict the correct type; (b) inability to leverage more information for a particular entity

type, since the conventional task formulation only allows to predict all entity types jointly; (c) lack of labelled data for

each entity type, especially in the biomedical domain. Challenge (a) and (b) are even more profound in the presence of

nested named entities.

We can avoid challenges (a) and (c) by modeling the task as multi-answer extraction task, where we predict only

one type of entity at a time, given a context determining which entity is being extracted at the current time. This

formulation allows us to avert the issue of nested named entities and helps us to jointly learn from multiple biomedical

datasets having similar entities. We specifically address the challenge (b) by providing four different types of knowledge

context as shown in Figure 1. We perform an empirical study of which knowledge type has the most significant impact

in a NER task.

Our task formulation enables us to create a considerably large dataset with knowledge context utilizing 18 biomedical

datasets. The goal is to learn jointly from multiple domains containing different target entities. We also propose a new

NER model over BERT using a re-contextualization layer called BERT-CNN. This layer uses token-local features to

recompute token encoding to enable the model to better understand the start and end locations of an entity. We use the

BERT-base model and show our task formulation and model performs better than a strong baseline of a BERT-large
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model pre-trained on medical corpus, and finetuned using the traditional NER task. We perform extensive experiments

to analyze the impact of each of our contributions. We also study the transfer learning ability of our knowledge guided

BERT-CNN model, as one of the major challenges currently faced by the biomedical community is the poor ability of

the models to transfer in real-life applications.

To summarize our contributions:

• We reformulate the task of named entity recognition as a multi-answer question answering task using knowledge

as a context.

• We make available a significantly large, cleaned and pre-processed dataset with knowledge context utilizing 18

biomedical datasets having in total 398495 training, 148166 validation and 502306 test samples.

• We propose a BIO tagging based model for the knowledge guided named entity recognition task, with a re-

contextualization layer.

• We perform extensive experiments to evaluate our models, including the ability of the model to adapt to new

domains.

• Finally, all our contributions together further push the state-of-the-art exact match F1 scores by 1.5-11% for 12

publicly available biomedical NER datasets.

2 OUR APPROACH

2.1 Task Formulation

Traditional systems define named entity recognition as amulti-class classification task. Given a context𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛},
any token 𝑐𝑖 is classified as one of the three tags 𝐵-𝑒𝑘 , 𝐼 -𝑒𝑘 , 𝑂 in the BIO-Tagging scheme, where 𝑒𝑘 ∈ 𝐸 (the set of

entity types for a dataset). This formulation leads to labelling error. A token 𝑐𝑖 is classified as 𝐵-𝑒𝑘 or 𝐼 -𝑒𝑘 when the

token is actually a 𝐵-𝑒 𝑗 or 𝐼 -𝑒 𝑗 where 𝑗 ≠ 𝑘 . This means that even though a system was able to identify the location of

an entity correctly, it fails to identify the correct type.

In our approach, we tackle this issue by formulating the NER task in the following way. Given a context 𝐶 =

{𝑐1, 𝑐2, ..., 𝑐𝑛}, any token 𝑐𝑖 is classified as 𝐵, 𝐼 and 𝑂 . To identify which entity, type the token belongs to, we provide

external knowledge 𝐾 to the context which in turn contains the entity type information. For example, if we want to

extract two entities 𝑒1 and 𝑒2 from context𝐶 , we first provide 𝐾𝑒1 and𝐶 as input to our model to extract 𝑒1 entities, then

provide 𝐾𝑒2 and 𝐶 as input to extract 𝑒2 entities. This formulation decouples the classification and the entity location

tasks, enabling the model to learn from multiple datasets and overcoming labelling error.

2.2 Knowledge Context Generation

We experiment with five types of knowledge context (𝐾 ) to identify entities and their types. These are: (a) Entity types

(𝑒𝑘 ∈ 𝐸) (b) separate Question (𝑄𝑘 ) created using each entity type, (c) Definition (𝐷𝑘 ) of each entity type along with the

entity type itself, (d) Examples (𝐸𝑔𝑘 ) along with entity type and (e) All of the above. If there are entities of 𝑛 entity types

in a text, during training we create a set of five knowledge context for each different entity type. Since the approach

works one entity type at a time, we make sure that the entity type is mentioned in each of the five contexts. During

inference, only the best knowledge context is used, i.e, if Question performs best for a dataset, we use only that context.

For the example mentioned in Figure 1, 𝐸 is {“Problem", “Test"} , 𝑄 is {“What are problem mentioned in text?", “What are

test mentioned in text?"}, 𝐷 is the definition text, {“Problem is a difficulty, disorder, or condition needing resolution", “Test is
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a procedure for critical evaluation”}, and 𝐸𝑔 are the examples {“hypertension, pain, afebrile, nausea, fever", “blood, glucose,

creatinine, hematocrit, blood-pressure”}.

2.3 Datasets

We create the dataset for NER using fifteen publicly available biomedical datasets
1
[12] and three datasets from previous

i2b2 challenges [40, 42–44]. One of the samples is shown in Figure 1. Our task formulation enables us to combine the

datasets and a create a significantly large dataset, that enables deep neural model learning. Moreover, the multi-task

learning for different entity types enables the model to generalize better.

Bionlp Shared Task andWorkshop: Six of the datasets Bionlp09 [20], Bionlp11ID [31], Bionlp11EPI [31], Bionlp13PC

[30], Bionlp13CG [30], Bionlp13GE [30] are from the Biomedical Natural Language Processing Workshops. Some of the

basic entities of these datasets are gene or gene products, protein, chemicals and organisms.

i2b2 Shared Task and Workshop: We use three datasets from i2b2 shared task and Workshop Challenges in Natural

Language Processing for Clinical Data. We only use training and testing data from 2010 Relations Challenge [44], 2011

Coreference Challenge [42] and 2012 Temporal Relations Challenge [40]. These datasets primarily contain entities like

problems, tests and treatments.

Bio-Creative Challenge and Workshop: These workshops provide datasets for information extraction task in

biological domain. We only use three datasets namely BC4CHEMD (Chemical) [22], BC5CDR (Chemical and disease) [48]

and BC2GM (gene or protein) [38]. We consider these datasets since they are similar to biomedical texts and can be

augmented to be trained together to generalize on extraction of some of the entities.

Others: Apart from these 12 datasets we also include CRAFT [3], AnatEM [33], Linnaeus [16], JNLPBA [21], Ex-PTM [34]

and NCBI-Disease [14] to increase our training and evaluation set. They include entities such as anatomy, species,

diseases, cell-line, DNA, RNA, gene or protein and chemicals.

2.4 Rule-based Template Creation

We use the following rules to create contexts for each knowledge type.

Entity: The first and the simplest context, is the Entity type name itself.

Question:We create a knowledge context Question (𝑄𝑘 ), using simple rules, like:

𝑄𝑘 = What are the [𝑒𝑘 ] mentioned in the text ?

Definition: To get knowledge context (𝐷𝑘 ), we find the corresponding scientific definition of each entity type from

UMLS Meta-thesaurus by considering the entity type as concept [6]. Other sources include challenge dataset definitions

and online resources.

𝐷𝑘 ∈ {UMLS | Challenge | Online Resource}
Examples: In order to determine representative examples of an entity type, we find the top ten most frequent entities

for each type from the entire training dataset. We concatenate these ten entities as the final knowledge context (𝐸𝑔𝑘 )

and prepend this in front of the text.

All: is just the concatenation of all of the above knowledge context.

The motivation behind using the entity type and definition as knowledge context is that the neural model can

leverage the information present in the knowledge to attend to correct entities. If we use question as a context then the

1
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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Fig. 2. BERT-CNN for Multi-Answer KGQA

task becomes a multi-answer question-answering task. We use examples as knowledge with the hypothesis that our

model will be able to choose the entities that can belong to same categories as the examples.

The distribution of each of the entities across each of the dataset for Training, Validation and Test splits (both positive

and negative samples) and more details about the dataset preparation can be found in the Appendix.

We treat each individual sentence in a medical document or paragraph as an individual sample. If a sentence has an

entity corresponding to a context, we consider that as a positive sample for that context. Similarly, we treat a sentence

that does not have an entity for a corresponding context as a negative sample for that context. Although these sentences

can contain entities for other entity types. Since many datasets do not provide a validation split, we randomly sample

from the train split to create our validation data. Overall, our dataset has 398495 train, 148166 dev and 502306 test

samples.

3 MODEL DESCRIPTION

3.1 Knowledge Guided NER

We choose the BERT-base cased version [13] as our base model. In our approach, given a text 𝐶 , we create a knowledge

context 𝐾𝑖 for each context type. We need to find the spans of entities 𝑆𝑠𝑡𝑎𝑟𝑡 and 𝑆𝑒𝑛𝑑 . So, we define the input to the

BERT model as follows, the knowledge context tokens 𝐾𝑖 = {𝑘𝑖 𝑗 } are prepended to the text tokens, 𝐶 = {𝑐 𝑗 }. The
sequence of tokens, {[𝐶𝐿𝑆], 𝑘𝑖1, ..𝑘𝑖𝑚, [𝑆𝐸𝑃], 𝑐1, ..𝑐𝑛, [𝑆𝐸𝑃]} is given as input to the BERT model where𝑚 is the size of

knowledge context 𝐾𝑖 and 𝑛 is the size of text 𝐶 . In our baseline model, for each token we predict 𝐵, 𝐼 and 𝑂 using a

feed-forward layer.

3.2 Re-contextualization

We modify the BERT-base model by adding a re-contextualization layer consisting of a two-dimensional convolution

layer. The purpose of this layer is to leverage information from adjacent or token-local embeddings and help in better

start and end prediction of the entities. As BERT uses multiple layers of attention which jointly focuses on all the

tokens, we add this CNN layers with a window of𝑊 < 5 to focus on nearby tokens only. We take the outputs of the

CNN layer and feed it to the final feed-forward layer to predict the tags. Figure 2 represents the end-to-end architecture

of our BERT-CNN model.
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ANATEM BC2GM BC4CHEMD BC5CDR BIONLP09 BIONLP11EPI

B
A
SE

BioBERT 89.63 89.32 89.47 82.45 83.83 83.13 90.97 89.59 90.27 87.19 90.59 88.84 89.65 88.60 89.13 85.23 85.60 85.41

MimicBERT 86.23 85.72 85.98 79.04 80.32 79.68 88.77 85.41 87.06 84.01 86.86 85.39 87.71 84.15 85.89 79.37 77.78 78.57

BERT-MRC 72.24 75.09 73.64 73.80 74.59 74.19 86.47 85.52 85.99 71.22 73.68 72.43 74.62 70.69 72.60 77.81 67.01 72.01

SOTA - - 91.61* - - 81.69* - - 92.36 - - 90.01 - - 84.20* - - 78.86*

O
U
R
S BioBERT 90.29 89.43 89.85 82.47 83.36 82.91 91.93 91.11 91.52 89.63 88.80 89.21 91.35 92.21 91.78 88.26 86.77 87.51

MimicBERT 87.05 86.50 86.80 81.22 81.40 81.31 89.47 88.86 89.16 88.25 86.78 87.51 89.19 91.41 90.29 88.01 82.19 85.00

BERT-CNN 89.78 89.24 89.51 82.89 83.39 83.14† 92.56 91.10 91.82 90.09 89.16 89.62 91.55 92.95 92.25† 88.58 87.40 87.99†
BIONLP11ID BIONLP13CG BIONLP13GE BIONLP13PC CRAFT EXPTM

B
A
SE

BioBERT 84.23 85.77 84.70 84.82 86.42 85.56 72.92 85.42 78.68 87.64 90.56 89.06 84.92 86.56 85.70 76.12 79.81 77.92

MimicBERT 83.93 81.84 82.35 77.52 80.32 78.71 64.72 65.53 65.12 81.59 85.45 83.43 81.27 79.08 80.04 66.74 67.29 67.01

BERT-MRC 80.25 73.26 76.60 74.57 69.25 71.81 77.79 75.54 76.65 76.51 76.95 76.73 75.79 72.25 73.98 76.61 76.93 76.77

SOTA - - 81.73* - - 78.90* - - 78.58* - - 81.92* - - 79.56* - - 74.90*

O
U
R
S BioBERT 86.34 85.58 85.96 87.18 87.28 87.23 82.28 86.58 84.38 90.14 92.09 91.11† 88.18 88.61 88.39 85.97 85.30 85.64†

MimicBERT 83.12 81.78 82.45 85.08 85.37 85.23 81.61 86.28 83.88 87.62 89.63 88.61 85.01 87.14 86.06 84.09 81.34 82.69

BERT-CNN 87.98 84.64 86.27† 90.62 88.56 89.58† 83.77 88.01 85.84† 89.03 91.87 90.43 90.54 89.19 89.86† 85.08 84.79 84.94

JNLPBA LINNAEUS NCBIDISEASE 2010-i2b2 2011-i2b2 2012-i2b2

B
A
SE

BioBERT 69.96 78.19 73.63 92.30 86.42 89.27 86.67 89.38 88.00 85.32 83.23 84.26 91.24 90.32 90.78 79.31 75.89 77.56

MimicBERT 67.99 76.32 71.66 91.69 81.81 86.46 84.04 88.23 86.08 90.37 88.29 89.32 92.83 91.22 92.02 79.78 81.01 80.39

BERT-MRC 70.52 69.38 69.95 74.13 73.56 73.84 77.25 73.23 75.19 75.32 73.23 74.26 81.24 80.32 80.78 69.31 65.89 67.56

SOTA - - 78.58* - - 95.68* - - 89.36 - - 90.25# - - - - - 80.91#

O
U
R
S BioBERT 76.12 82.15 79.02 90.32 89.88 90.10 87.50 90.67 89.05 93.29 94.41 93.84 93.88 94.15 94.02 73.53 83.21 78.07

MimicBERT 74.97 80.79 77.77 86.31 85.10 85.70 86.82 88.80 87.80 94.85 95.76 95.30 94.18 94.30 94.24 81.57 84.76 83.13

BERT-CNN 76.85 81.79 79.24 90.69 90.53 90.61 87.89 91.56 89.69 95.27 95.91 95.59† 94.70 94.94 94.82 84.83 85.25 85.04†
Table 1. Precision, Recall and F-Measure (in order) for 18 datasets compared with multiple models. * tagged scores are non-BERT
systems, # BERT-Large and rest are BERT-Base systems. Our models use knowledge type All or Question, whichever is observed best
on validation accuracy. Best F1-scores are in bold. Underlined are our best scores where our models are not SOTA. † tagged scores are
statistically significantly better than SOTA (𝑝 ≤ 0.05 based on Wilson score intervals [49]). Dataset statistics are in the Appendix.

3.3 Training and Testing

During training, the context, 𝑋 (combination of knowledge, 𝐾𝑖 and given text,𝐶) has gold annotations (𝑦𝑖 ) of 𝐵, 𝐼 and𝑂

for each token (𝑥𝑖 ). We calculate cross-entropy loss for each token 𝑥𝑖 as:

𝐿𝑡𝑜𝑘𝑒𝑛 = −
𝑀∑
𝑐=1

𝑦𝑥𝑖 ,𝑐𝑙𝑜𝑔(𝑃𝑥𝑖 ,𝑐 )

where𝑀 is the total number of classes (B, I, O),𝑦𝑥𝑖 ,𝑐 is a binary indicator whether the label 𝑐 is the correct classification

of token 𝑥𝑖 , 𝑃𝑥𝑖 ,𝑐 is the predicted probability of 𝑥𝑖 belonging to class 𝑐 .

The model is trained end-to-end with the above loss. During inference we consider the tokens 𝑥𝑖 present only in the

text 𝐶 . Text chunks that start from label 𝐵 and continue till last 𝐼 tag are predicted as entities. For each entity type we

feed the text with a separate context and text input. We train our model jointly on a processed combined dataset of 18

common biomedical datasets and compare the performance when trained individually.

4 EXPERIMENTS

4.1 Experimental Setup and Training Parameters

We use a batch size of 32 and a learning rate of 5e-5 for all our experiments. The maximum sequence length of 128/256

depends on the 99th percentile of the input token lengths. We train using 4 NVIDIA V100 16GB GPUs, with a patience of

5 epochs. We report the mean F1 scores for three random seeds, the deviation is reported in Appendix. For BERT-CNN

model, we apply a two-dimensional convolution layer on top of BERT contextual token embeddings. The convolution

layer uses a 5 × 5 size kernel. The stride size is (1,2), where 1 is across sentence dimension, and 2 is across word

embedding dimension. We also perform circular padding.
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DATASET PRECISION RECALL F-MEASURE
T Q D E A T Q D E A T Q D E A

ANATEM 89.43 88.81 89.03 89.41 89.78 87.54 89.12 87.23 88.69 89.24 88.47 88.96 88.13 89.05 89.51
BC2GM 81.79 82.89 80.96 82.37 81.17 82.32 83.39 81.45 82.29 82.06 82.05 83.14 81.21 82.33 81.61

BC4CHEMD 90.25 92.07 89.81 90.57 91.19 88.48 91.01 88.13 89.27 90.49 89.36 91.54 88.96 89.92 90.84

BC5CDR 87.93 90.09 88.07 88.49 89.01 86.72 89.16 86.12 86.62 87.83 87.32 89.62 87.08 87.55 88.42

BIONLP09 88.86 90.85 51.14 89.75 91.55 89.35 92.75 69.14 89.05 92.95 89.11 91.78 58.79 89.40 92.25
BIONLP11EPI 86.49 88.58 77.56 87.55 87.94 83.74 87.40 83.53 83.32 85.75 85.09 87.99 80.44 85.38 86.83

BIONLP11ID 86.19 86.60 84.29 85.14 85.56 81.09 85.35 81.24 81.05 83.38 83.56 85.97 82.74 83.04 84.46

BIONLP13CG 88.21 89.49 87.45 89.04 90.62 83.23 86.45 82.71 85.57 88.56 85.65 87.94 85.01 87.27 89.58
BIONLP13GE 80.86 83.77 68.64 80.26 83.25 84.72 88.01 81.32 84.48 85.36 82.74 85.84 74.44 82.32 84.29

BIONLP13PC 89.79 89.03 88.43 88.95 89.87 89.55 91.87 88.33 90.58 90.60 89.67 90.43 88.38 89.76 90.23

CRAFT 86.81 88.07 82.79 88.00 90.54 84.31 88.19 84.67 89.18 89.19 85.54 88.13 83.72 88.58 89.86
EXPTM 84.27 84.26 74.01 84.06 85.08 82.67 85.39 83.96 82.72 84.79 83.65 84.83 78.67 83.38 84.94
JNLPBA 71.56 76.64 68.07 71.68 75.79 77.63 80.97 70.41 78.42 80.36 74.48 78.75 69.22 74.89 78.01

LINNAEUS 91.34 88.47 86.33 92.37 90.69 86.01 88.47 86.52 88.30 90.53 88.59 88.47 86.43 90.29 90.61
NCBIDISEASE 86.64 87.94 86.99 86.33 87.89 90.05 89.94 89.43 89.84 91.56 88.31 88.93 88.19 88.05 89.69
2010-i2b2 93.42 95.27 93.06 93.43 94.87 94.13 95.91 93.88 94.60 95.66 93.77 95.59 93.47 94.01 95.26

2011-i2b2 93.10 94.42 92.66 94.23 94.70 92.04 94.37 92.05 93.67 94.94 92.57 94.40 92.35 93.95 94.82
2012-i2b2 82.27 84.83 81.00 75.63 67.23 81.27 85.25 81.33 83.96 84.00 81.77 85.04 81.17 79.58 74.68

Table 2. Precision, Recall and F-Measure of BERT-CNN model using different knowledge types: Entity Type (T), Question (Q),
Definition (D), Examples (E) and all of them together (A). Best scores are in bold, second best are underlined. Mean of three random
seed runs are reported.

4.2 Baseline Models

We consider the following models as strong baselines for our work. The first set of baselines are the BERT models

pre-trained on biomedical text BioBERT [24] and MimicBERT [37] finetuned using traditional NER task. BioBERT

and MimicBERT are the current state-of-the-art (SOTA) models for NER on multiple biomedical datasets. The second

set of baselines are BioBERT, MimicBERT and BERT-MRC finetuned on the knowledge guided NER task. BERT-MRC

is initialized with BioBERT base weights, same as our BERT-CNN model. BERT-MRC model is another concurrent

query-driven NER model [25], that models the task as a machine reading comprehension task. It predicts all possible

start and end positions and predicts valid start-end spans through another feed-forward layer that takes input the

predicted start-ends. This model shows considerable improvements in general domain query based NER tasks. The

baselines are trained on individual datasets as each dataset has a separate set of entities.

5 RESULTS AND DISCUSSION

5.1 Biomedical NER

Table 1 compares our method with our baselines on the 18 biomedical NER datasets. Our methods use the best knowledge

context identified on the validation set performance. Current state-of-the-art for AnatEM and Linnaeus use specific

lexicons and entity specific rules that do not generalize, and hence are not directly comparable to neural models,

although our methods approach their performance. On BC4CHEMD and BC5CDR the state-of-the-art methods are

BERT-Base models finetuned specifically on chemical and other science corpus, whereas our methods use BioBERT as

backbone. Still our models are within 1% F1 score. 2011-i2b2 does not have a task specific to NER, therefore does not

have current state-of-the-art methods, but still has annotations for the named entities which we use for joint training.

On the rest 12 datasets, we achieve state-of-the-art using BERT-Base and beat methods that use BERT-Large. On JNLPBA
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DATASET P ΔP R ΔR F ΔF
ANATEM 87.34 -1.47 89.31 +0.19 88.31 -0.65
BC2GM 79.91 -2.98 81.63 -1.76 80.76 -2.38
BC4CHEMD 92.56 +0.49 91.10 +0.09 91.82 +0.28

BC5CDR 87.67 -2.42 90.13 +0.97 88.88 -0.74
BIONLP09 86.92 -3.24 84.91 -6.61 85.90 -4.93
BIONLP11EPI 84.57 -4.01 86.97 -0.43 85.75 -2.24
BIONLP11ID 87.98 +1.38 84.64 -0.71 86.27 +0.30

BIONLP13CG 84.01 -3.97 80.84 -6.42 82.39 -5.23
BIONLP13GE 72.33 -9.49 86.44 +0.18 78.76 -5.22
BIONLP13PC 86.40 -2.63 87.21 -4.66 86.80 -3.63
CRAFT 86.35 -1.72 85.65 -2.54 86.00 -2.13
EXPTM 75.28 -8.44 81.51 -4.23 78.27 -6.44
JNLPBA 76.85 +0.81 81.79 +0.16 79.24 +0.51

LINNAEUS 91.28 +2.81 86.15 -2.32 88.64 +0.17

NCBI-DISEASE 83.86 -2.80 87.25 -3.63 85.52 -3.20
2010-i2b2 89.87 -5.40 90.75 -5.16 90.31 -5.28
2011-i2b2 91.49 -2.93 92.25 -2.12 91.87 -2.53
2012-i2b2 82.05 +0.72 82.31 -2.21 82.18 -0.71

Table 3. Change in performance when BERT-CNN model is trained individually on respective datasets with Question context.
Negative Δ indicates Multi-task is better and are in bold. Precision (P), Recall (R), F-Measure (F).

and NCBI-Disease datasets we improve, but our improvement is not statistically significant. The SOTA scores are F1

values from the following work [4, 12, 24, 37].

Our task formulation gives a significant boost in performance, which is observed in the improvements made by our

BioBERT and MimicBERT base models compared to the baseline models following traditional NER formulation. Our

BERT-CNN model further improves performance over BioBERT knowledge guided QA model on 12 tasks with a margin

of 0.5 to 2.2% (173 - 1934 samples). When it under-performs, it is within a margin of 0.5% (less than 100 samples).

BERT-MRC fails to perform strongly using the same knowledge context as BERT-CNN. On analysis, we observe the

model fails to predict the correct end locations for majority of the samples. Overall, BERT-MRC suffers in Recall. When

we compare our BIO tagging scheme to BERT-MRC start-end prediction method, if 𝑘 is the number of entities and 𝑁 is

the number of tokens, time complexity wise our method is O(𝑘𝑁 ) as we classify each token, whereas BERT-MRC is

O(𝑘𝑁 2) as they independently predict start and end locations and then match each start location with an end location.

5.2 Ablation Studies and Analysis

Effect of different knowledge contexts: Since we incorporate four different knowledge contexts to help in NER, here we

identify which knowledge context is better for the NER task across all the 18 datasets. The performance of BERT-CNN

model with the knowledge contexts across the test set is shown in Table 2. The scores are entity precision, recall and

exact match F1 scores. We observe Question and All contexts to perform consistently on all the datasets. We believe

this is because of the presence of “what” that helps the model to find entities much better than given just a text. To

verify our hypothesis we probe our BERT-CNN model trained with Question context with multiple probes like “what

problem?”, the complete question, and “problem” for 20 samples and observe the change in attention scores. As the

model is trained with a template, the best prediction is observed on the complete question, with the least scores for only

the entity type. Attention scores for “what” were consistently high. The question of why BERT attention scores are
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Fig. 3. Attention scores of our BERT-CNN model trained withQuestion context for three knowledge context probes, “What”, “problem”
and a context where we remove the entity-type. For the last, the model attends to all three entities present pain (problem), PCA and
PO medication (treatment)

Fig. 4. Effect of the train set size on the three validation set metrics for BERT-CNN model with five contexts.

high for query words is a future research problem, and similar questions about Attention have been raised by others

[10]. Figure 3 shows examples of such probes. We can observe our model identifies all the entities, and the entity-type

acts as a filter. Definition and Examples under-perform, we believe the definition might be too generic for an entity type

and examples, although representative of class might not be comprehensive.

Effect of Multi-task training: To analyze how much multi-task training strategy affects the performance, we define

an experiment where we keep the model (BERT-CNN) and the knowledge context Question same, but train on each

individual datasets, and compare with joint training. Table 3 shows the results of our experiments. Individual dataset

training helps improving F1 scores marginally (max 0.5%) on four datasets, whereas joint training substantially improves

performance (0.65%-6.44%) on some datasets. This empirically validates our hypothesis that training on combined

huge biomedical datasets helps. On further analysis the datasets that have unique entities like AnatEM, 2012-i2b2,

Bionlp11ID, Linnaeus and JNLPBA do not show much difference. The datasets that improve is due to presence of

common entity-types like Gene/Protein, Chemical, Disease, Problem, Treatment and Test that helps the model to
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ENTITY↓ PRECISION RECALL F-MEASURE
No-K K No-K K No-K K

Gene/Protein 67.33 84.19 74.01 86.73 70.51 85.44
Chemical 89.04 91.84 88.42 91.15 88.73 91.49
Disease 83.17 83.48 86.62 88.00 84.86 85.68
Problem 91.95 93.28 92.83 94.18 92.39 93.73
Treatment 91.78 92.91 91.98 93.47 91.88 93.19
Test 92.12 94.09 93.23 94.67 92.67 94.38

Table 4. Comparison of Entity specific (No-K) BERT-CNN model with Question Context provided multi-entity BERT-CNN model (K).
Better values are in bold

MODEL −→
ENTITY ↓

BIOBERT(Ours) MimicBERT(Ours) BERT-CNN(Ours)
SRC F1 TGT F1 SRC F1 TGT F1 SRC F1 TGT F1

Gene/Protein 84.83 83.27 82.46 80.75 84.99 85.63
Chemical 91.35 76.13 85.60 66.63 89.83 75.92

Disease 86.46 68.01 84.13 60.54 88.74 70.00
Problem 94.42 90.29 93.72 89.67 94.43 90.90
Treatment 94.01 89.67 93.76 89.99 94.16 90.22
Test 94.99 91.36 94.85 90.91 94.85 91.11

Table 5. Transfer Learning experiment results. The metric is exact match F1 for source (SRC) and target (TGT) domain. Bold across
each of the entities are the best, underlined are the second best.

generalize well and learn better representations. We noticed that the definition of an entity was consistent when it

was present in multiple datasets. It ensured that the model was not confused by different definitions. On the other

hand, some identical entities had different names in different datasets. For example, disease was called Problem in i2B2,

Disease in NCBI-Disease, and by a more specific name Cancer in Bionlp13CG.

Effect of Knowledge Context compared to Individual entity training: In this experiment we study the effect of

knowledge context over our task formulation. We compare our single BERT-CNN model trained with Question context

to six different BERT-CNN models each trained only for one specific entity type detection without any context. The

entity types are selected such that they are present in multiple datasets and have the most significant number of samples.

Table 4 summarizes the results. The results show that knowledge context and training jointly with multiple entity types

helps in improving the performance for all entity types, compared to individual entity specific models. The performance

improvement for Gene/Protein is the most significant.

Effect of Train Set Size: In this experiment we study how the train set size affects the model performance. We sample

different percentage of training samples from the total train dataset as seen in Figure 4. We ensure a balanced sampled

train set with equal number of positive and negative samples and evaluate across all entities. The training samples

are chosen from each of the datasets to ensure the model is not biased towards a dataset or entity type. We do not

change any parameters of the model. It can be observed that the performance of the model increases rapidly and then

tapers down for each of the context types. We can infer that the model can achieve quite a good performance (84%)

with just 5% of training samples but needs much more samples to achieve the state-of-the-art performance. As training

samples goes beyond 5%, the precision, recall and the F1-scores for knowledge types Question and All clearly separate

themselves from the other contexts.
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Transfer Learning:We also examine the transfer learning capability of our system on the six entity sets: gene/protein,

chemical, disease, problem, test and treatment, since they are present in multiple datasets. We tested our model on

samples of one dataset (target domain) while training and validating on the remaining datasets (source domain). We

choose the target domain for each entity to be the dataset that produces the best overall F1-score on full data with

BERT-CNN model. We consider Bionlp11ID, BC4CHEMD, BC5CDR datasets as the target domain for gene/protein,

chemical and disease respectively and 2010-i2b2 for problem, treatment and test. Table 5 summarizes the results.

The results show a varied degree of transfer learning, losing only 0.5% F1 in some tasks and by as much as 20% in

other tasks, which is in line with earlier observed performance loss [5]. The difference in source and target F1-scores

is remarkably close for Problem, Treatment and Test entities. The two domains although are close for these entities,

they do have different set of entities. Chemical shows a significant drop but still our model achieves 75% F1 despite the

target domain containing many prior unseen entities. For Gene/Protein the source and target domain are nearly the

same set of entities.

6 RELATEDWORK

External Knowledge : In the past, there have been several attempts to incorporate external knowledge through feature

engineering and lexicons [7, 9, 19, 27], or incorporating knowledge in the feature extraction stage [12, 52], or using

document context [13]. In our work, we incorporate simple textual knowledge sentences and show how to integrate

them in named entity recognition tasks.

Multi-Task Learning : Multi-task learning have been used in the past to tackle the labelling problem of NER. For

example, multi-task learning with simple word embedding and CNN [12], cross-type NER with Bi-LSTM and CRF [47],

MTL with private and shared Bi-LSTM-CRF using character and word2Vec word embeddings [45]. In our work, we do

multi-task learning by reducing all different NER tasks to the same generic format and use transformer encoders.

Language Models and Transfer Learning : There have been prior attempts to reduce the labelling confusion by

using a single model to predict each entity-type [24] and also using transfer-learning [4, 24, 37]. Our work is similar to

them, which also use pre-trained language models (BERT), and/or predict different types of entities separately, but

differs in task formulation and use of explicit external knowledge context. We show jointly learned single model is

better than per entity-type models.

NER as a Question Answering Task : In general domain, researchers have formulated multiple NLP tasks as question-

answering format in DecaNLP [28], semantic-role labelling as in QASRL [18] and others have argued that question-

answering is a format not a task [15]. We also use QA format as a part of our task, to address previously mentioned

challenges . A possibly concurrent work, BERT-MRC [25] also attempts at NER as a QA task in general domain by

span predictions for individual entity types in a reading comprehension style approach. We however differ in the task

formulation using BIO tagging scheme, our model design and our focus in Biomedical NER. A detailed comparison is in

Section 5.1.

BioMedical NER: In Biomedical domain, CollaboNet [54] uses multiple expert models for each dataset collaborating

to reduce the misclassification error and NER using variational dropout [17]. Dictionary-based distantly supervised

methods [46] have been proposed to reduce the need of human-annotations, but are still far from fully-supervised

methods. Other methods use more nuanced approaches of adding word and character-level features [53]. The most

common approach of using BiLSTM-CRFs (recurrent neural networks) for NER, has been applied to several bio-medical or

chemical applications, such as Medline indexing [36], entity extraction for fMRI [1], postpartum depression detection [8],

and conversational agents [2]. Recurrent neural networks are prevalent for clinical and biomedical sequence labelling
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tasks such as NER [51]. A major drawback to such approaches is the need for multiple models for each dataset. We hope

our work can motivate adaptation of KGQA and transformer encoders, which not only reduces the need for multiple

models, but improves the overall task performance.

7 CONCLUSION

We reformulated the NER task as a knowledge guided, context driven QA task and showed it has a significant impact.

Our models are more explainable using the query-text attention and address the major challenges faced by current NER

systems. Our approach has achieved above state-of-the-art F measures for 14 of the common public biomedical NER

datasets. In future, we plan to perform more experiments, such as few-shot learning between different entity groups,

adding specific loss functions and logical constraints for NER tasks.
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A MODEL EXPLANATIONWITH ATTENTION PROBING

We study our BERT-CNN model using attention value heatmaps and try to explain how our model uses the knowledge

contexts to extract specific entities from a given dataset. To show this, we choose a sample “Patient was admited , pain

was managed with a PCA and later with PO medication.” where there are multiple entities pain (problem), a PCA and

PO medication (treatment), Patient (person) and admitted (occurance).

A.1 UsingQuestion as Knowledge Context

From the Figures 5a, 5b, 5c and 5d it can be seen that, when knowledge context is in question format then, each of the

entity types present in the knowledge context guide the model to chose the correct entities. This can be seen from the

higher attention values for those specific entities.

A.2 Using Entity type, Definition, Example and All combined as Knowledge Context

We also probed our model to extract the attention weights for each of the other four knowledge contexts. Here we

show this only for problem entity type. In Figure 6a it can be seen that attention weight between problem in knowledge

context and pain in text is highest. Figure 6b shows keyword like disorder in the definition representing the meaning

of the entity type problem highly attends to the entity pain. On using the example as knowledge, it can be seen from

Figure 6c, keywords like hypertension, pain, nausea, fever highly attend to the entity pain in the text. This is in line

with our hypothesis that providing similar entities belonging to the same entity group might help find the entity in a

text. Finally, in Figure 6d, it can be seen that the keywords from question, definition and example all collectively help to

predict the entity pain in the text.

B MODEL TRAINING

We use the HuggingFace [50] and Pytorch Deep learning framework [32]. We train the model with following hyperpa-

rameters, learning rates in the range [1e-6,5e-5], batch sizes of [16,32,48,64], linear weight-decay in range [0.001,0.1]
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(a) Problem -Question (b) Treatment - Question

(c) Person - Question (d) Occurance - Question

Fig. 5. Attention Probes for different knowledge and entity types.

and warm-up steps in range of [100,1000]. We use BERT-base-cased version for all our models. The BERT-base-cased

model has nearly 110M parameters.

C ENTITY DISTRIBUTION IN THE DATASET

The number of samples present in the Table 8 and 9 are created directly from the train, validation and test samples of

18 biomedical datasets. The i2b2 datasets do not have separate validation data splits. We use 30% of the samples from

training data as validation data. The Entity Mentions represents the total number of entities present for the datasets in

all of train, validation and test samples. Since each sample data can have multiple entities, the number is higher than

the total positive and negative samples for the dataset.

D PERFORMANCE COMPARISON ON TEST DATA

Table 6 shows the performance comparison of our best model with SOTA on the test data for each of the 18 datasets.

The F-measures in bold are the best performance on each datasets. The state-of-the-art for Linnaeus and AnatEM
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(a) Problem - Entity Type

(b) Problem - Definition

(c) Problem - Example (d) Problem - All knowledge combined

Fig. 6. Attention Probes for different knowledge and entity types.

datasets uses dictionaries developed without a clear train/test split, hence our scores are not directly comparable. Also

2011-i2b2 do not have SOTA concept extraction performance. Improvements in 10 datasets are significant as compared

to the SOTA.

E TRAININGWITH BALANCED DATASET

We generated a sample for each text available in the source data. The text may or may not contain a particular entity.

So we generate negative samples for each text and for each available entity types of the dataset making the datasets

unbalanced. In Table 7 we show that the negative samples does not have much impact on the performance of our

models. The results are taken using BERT-CNN model with Question as a context. Negative values in Δ𝑃 ,Δ𝑅 and Δ𝐹

means training on unbalanced data is better than on balanced data.
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Dataset Entities SOTA F1 OURS P OURS R OURS F1 Significant
ANATEM 4616 91.61 90.29 89.43 89.85 ± 0.48 No

BC2GM 6322 81.69 82.89 83.39 83.14 ± 0.54 Yes

BC4CHEMD 25331 92.36 92.56 91.10 91.82 ± 0.58 No

BC5CDR 9808 90.01 90.09 89.62 89.62 ± 0.71 No

BIONLP09 3589 84.20 91.55 92.95 92.25 ± 0.57 Yes

BIONLP11EPI 5730 78.86 88.58 87.40 87.99 ± 1.10 Yes

BIONLP11ID 3810 81.73 87.98 84.64 86.27 ± 1.80 Yes

BIONLP13CG 7861 78.90 90.62 88.56 89.58 ± 0.68 Yes

BIONLP13GE 4354 78.58 83.77 88.01 85.84 ± 0.93 Yes

BIONLP13PC 5306 81.92 90.14 92.09 91.11 ± 0.12 Yes

CRAFT 18770 79.56 90.54 89.19 89.86 ± 0.55 Yes

EXPTM 2308 74.90 85.97 85.30 85.64 ± 0.61 Yes

JNLPBA 8673 78.58 76.85 81.79 79.24 ± 0.45 No

LINNAEUS 1428 95.68 90.69 90.53 90.61 ± 0.28 No

NCBIDISEASE 956 89.36 87.89 91.56 89.69 ± 0.37 No

2010-i2b2 30140 90.25 95.27 95.91 95.59 ± 0.30 Yes

2011-i2b2 25271 - 94.70 94.94 94.82 ± 0.41 -

2012-i2b2 15301 80.91 84.83 85.25 85.04 ± 1.18 Yes

Table 6. Precision(P), Recall(R) and F-measure(F1) with our best model measured by running with three seed values. Significant
column shows whether our F1-scores are statistically significantly better than SOTA F1 (𝑝 ≤ 0.05, based on Wilson score intervals
[49]). Best F-measures are in bold.

F DATA PREPROCESSING

We have done the experiments on 18 biomedical dataset which are available in different formats. For the 15 publicly

available datasets, we used the BIO annotated files and automatically extracted the spans based on the tags. The three

i2b2 files has different format. They have individual biomedical reports containing multiple sentences which may or

may not contain the entities. So we preprocessed them by considering each statement as a sample without rejecting

any sentence. Thus we bring all the datasets into a common format. Each sample in our pre-processed data contains

the id(indicating the dataset which is the sample origin), text, answers, spans, number of answers present in the text,

entity type, question context, definition of entities, top ten frequently occurring examples with counts. We also grouped

together similar entity-types to form entity groups and add entity group definitions which can be used for further

research.
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DATASET P ΔP R ΔR F ΔF
ANATEM 88.88 -0.07 88.23 +0.89 88.55 +0.41

BC2GM 82.93 -0.04 82.84 +0.55 82.88 +0.26

BC4CHEMD 91.64 +0.43 91.03 -0.02 91.33 +0.21

BC5CDR 89.61 +0.48 88.37 +0.79 88.98 +0.64

BIONLP09 90.76 -0.60 92.33 -0.81 91.54 -0.71
BIONLP11EPI 87.86 +0.72 86.29 +1.11 87.07 +0.92

BIONLP11ID 85.39 +1.21 85.19 +0.16 85.29 +0.68

BIONLP13CG 88.61 -0.63 87.54 -0.27 88.07 -0.45
BIONLP13GE 81.94 -0.12 88.77 -2.51 85.22 -1.24
BIONLP13PC 89.48 -0.45 90.73 +1.14 90.10 +0.33

CRAFT 87.43 +0.64 88.12 +0.07 87.78 +0.35

EXPTM 85.12 -1.40 85.99 -0.25 85.55 -0.84
JNLPBA 75.85 +0.19 82.37 -0.74 78.98 -0.25
LINNAEUS 88.16 +0.31 87.91 +0.56 88.03 +0.44

NCBI-DISEASE 88.00 -1.34 90.46 +0.42 89.22 -0.50
2010-i2b2 94.96 +0.31 95.71 +0.20 95.33 +0.26

2011-i2b2 94.01 +0.41 94.09 +0.28 94.05 +0.35

2012-i2b2 82.97 -1.64 86.65 -2.13 84.77 -1.88
Table 7. Precision (P), Recall (R) and F-Measure (F) using BERT-CNN model trained on balanced dataset with Question as
knowledge. ΔP, ΔR, ΔF represent change in performance when compared to training our model on full datasets. Negative value
indicates training on unbalanced dataset is better while positive value indicates balanced dataset training produces better performance.
Negative values are in bold.
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Dataset Entity Entity Mentions Train + Train - Dev + Dev - Test + Test -
AnatEM Anatomy 13701 3514 2169 1122 959 2308 1405

BC2GM Gene/Protein 24516 6404 6071 1283 1214 2568 2424

BC4CHEMD Chemical 84249 14488 16002 14554 15909 12415 13738

BC5CDR
Chemical 14913 2951 1595 3017 1551 3090 1688

Disease 12852 2658 1888 2727 1841 2842 1936

BioNLP09 Gene/Protein 14963 4711 2716 1014 433 1700 739

BioNLP11EPI Gene/Protein 15881 3797 1896 1241 714 2836 1282

BioNLP11ID

Gene/Protein 6551 1255 1193 446 265 955 977

Organism 3469 1120 1328 270 441 779 1153

Chemical 973 334 2114 77 634 151 1781

Regulon-Operon 87 9 2439 19 692 43 1889

BioNLP13CG

Gene/Protein 7908 1956 1077 393 610 1185 721

Cell 4061 1388 1645 399 604 714 1192

Chemical 2270 645 2388 274 729 431 1475

Cancer 2582 908 2125 324 679 665 1241

Organ 2517 919 2114 305 698 565 1341

Organism 2093 827 2206 267 736 486 1420

Tissue 587 259 2774 77 926 153 1753

Amino Acid 135 38 2995 17 986 34 1872

Cellular Component 569 247 2786 78 925 138 1768

Organism Substance 283 131 2902 33 970 81 1825

Pathological Formation 228 91 2952 35 968 73 1833

Anatomical System 41 16 3017 3 1000 17 1889

Immaterial Anatomical 102 47 2986 18 985 29 1877

Organism Subdivision 98 42 2991 12 991 35 1871

Multi-Tissue Structure 857 345 2688 114 889 236 1670

Developing Anatomical Structure 35 13 3020 5 998 17 1889

BioNLP13GE Gene/Protein 12031 1499 901 1655 1010 1936 1376

BioNLP13PC

Gene/Protein 10891 2153 346 723 134 1396 298

Complex 1502 542 1957 178 679 398 1296

Chemical 2487 596 1903 244 613 450 1244

Cellular/ Component 1013 373 2126 144 713 263 1431

CRAFT

Gene/Protein 16108 4458 5539 1358 2105 3140 3634

Taxonomy 6835 2511 7486 994 2469 1710 5064

Chemical 6018 1908 8089 586 2877 1344 5430

Cell Line 5487 2058 7939 540 2923 1257 5517

Seqence Ontology 18856 4303 5694 1711 1752 3023 3751

Gene Ontology 4166 1499 8498 336 3127 1344 5430

EXPTM Gene/Protein 4698 857 520 279 158 1160 679

JNLPBA

DNA 10550 4670 12146 553 1218 624 3226

RNA 1061 713 16103 89 1682 102 3748

Cell Line 4315 2591 14225 285 1486 378 3472

Cell Type 8584 4735 12081 415 1356 1403 2447

Gene/Protein 35234 11840 4976 1137 634 2368 1482

Linnaeus Species 4242 1546 9173 520 3300 1029 5381

NCBI-Disease Disease 6871 2921 2473 489 434 538 398

Table 8. Data Distribution, with counts of entities, number of positive samples with at least one entity mentions, and negative
samples with no target entity.
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Dataset Entity Entity Mentions Train + Train - Dev + Dev - Test + Test -

2010-i2b2
Problem 18979 4213 4226 - - 5802 6590

Treatment 13809 3126 4226 - - 7234 6590

Test 13576 2426 4226 - - 4591 6590

2011-i2b2

Person 17744 7207 3990 - - 4715 2971

Problem 18869 7003 3990 - - 4384 2971

Treatment 17708 5300 3990 - - 3565 2971

Test 13514 4191 3990 - - 2786 2971

2012-i2b2

Problem 4754 2832 3597 - - 2326 2683

Treatment 7076 2341 4088 - - 1976 3033

Test 4754 1786 4643 - - 1465 3544

Occurance 5126 2086 4343 - - 1677 3332

Clinical-Department Event 1716 852 5577 - - 655 4354

Evidential Event 1334 706 5723 - - 560 4449

Table 9. Data Distribution, with counts of entities, number of positive samples with at least one entity mentions, and negative
samples with no target entity.
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