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Abstract

Question answering (QA) is considered to
be a central aspect of natural language
processing (NLP) and has seen remarkable
progress in the last decade, brought-about by
transformer-based language models trained on
large human-annotated text corpora. How-
ever, several pitfalls of supervised training
have been identified, especially when consid-
ering performance of such systems on new do-
mains, linguistic styles, and adversarial sam-
ples. Unsupervised question answering — the
ability to answer questions without explicit su-
pervision from human-annotated training data,
has emerged as a research direcftion that could
potentially mitigate these pitfalls. This paper
reviews recent trends in unsupervised question
answering and provides a unifying perspective
of work in this area, along with a survey of
the closely related directions of weakly and
partially supervised QA models. We provide
insights into associated challenges and poten-
tial research directions towards robust unsuper-
vised QA models.

1 Introduction

Question-answering (QA) is considered to be inte-
gral to the human reasoning process (Turing, 1950)
and the development of systems that resemble this
ability has been a long-standing research program
in natural language processing (Simmons, 1965).
QA systems are crucial for evaluating natural lan-
guage understanding and human-machine commu-
nication via dialog systems. Several datasets have
been proposed for QA tasks such as extractive ques-
tion answering (predicting a span of text as an-
swer) (Rajpurkar et al., 2018; Yang et al., 2018;
Kwiatkowski et al., 2019) and multiple-choice
question answering (predicting an answer from a
list of choices) (Sap et al., 2019; Talmor et al.,
2019; Zellers et al., 2018; Clark et al., 2018). Many
of these tasks require reasoning over contexts, cor-
pora, and commonsense and scientific knowledge.
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Large pre-trained language models (PLMs) (De-
vlin et al., 2019; Yang et al., 2019; Liu et al., 2019;
Brown et al., 2020) have resulted in significant per-
formance improvements on these tasks, using fully-
supervised training protocols. Unfortunately, these
methods overfit the training data and do not transfer
well to new domains, especially for low-resource
domains where large-scale training data collection
may not be feasible. Spurious correlations, annota-
tion artifacts, and linguistic biases in NLP datasets
also affect generalization (Gururangan et al., 2018;
Niven and Kao, 2019; Kaushik and Lipton, 2018;
Poliak et al., 2018). Analysis of BERT embeddings
reveals artifacts such as two random words hav-
ing high cosine similarity (Ethayarajh, 2019), and
25% tokens being assigned to incorrect clusters
(Mickus et al., 2019). PLMs also fail in question-
answering tasks with negated questions in cloze
completion (Kassner and Schiitze, 2020; Ettinger,
2020), multiple-choice QA (Asai and Hajishirzi,
2020), and visual question answering (Gokhale
et al., 2020). These findings are undesirable for ro-
bustness considerations. While carefully-designed
crowd-sourcing (Sakaguchi et al., 2020) and dataset
filtering (Le Bras et al., 2020) have been suggested
to mitigate these phenomena, these are typically
associated with a high cost of data annotation.

This survey focuses on various efforts towards
unsupervised question answering (on English lan-
guage inputs) . While task-specific (Wang, 2006;
Wu et al., 2017; Fu et al., 2020; Zhu et al., 2021)
and method-specific (Lai et al., 2018; Storks et al.,
2019) surveys of question answering and review of
recent datasets (Rogers and Rumshisky, 2020) are
available, this paper is the first survey on unsuper-
vised QA, drafted with the following objectives:

1. to review recent development of QA models
trained without explicit supervision,

2. to identify key challenges in unsupervised QA,

3. to recommend potential research directions to
mitigate these challenges.



The paper is structured as follows. Section 2 in-
troduces the problem setup for unsupervised ques-
tion answering, and provides a categorization of
various QA tasks and major evaluation benchmarks.
Section 3 surveys existing methodologies, training
protocols, and results for unsupervised QA models.
Section 4 discusses the related problems of learn-
ing from weak and partial supervision. Finally, we
delineate challenges associated with unsupervised
methods in Section 5, and offer our insights in Sec-
tion 6 to open up potential research directions for
future work in this area.

2 Unsupervised Question Answering

Problem Setup: In the unsupervised question an-
swering setup, typically, a dataset of context para-
graphs is available, and the model must learn to
answer questions about these paragraphs. In some
cases, a set of questions may also be provided as
part of the dataset; however the true answers to
each question are not available during training.
We consider four categories under this prob-
lem setup, for which unsupervised QA methods
have been explored: Winograd Schema Challenge
(WSC), Extractive QA (EQA), Multiple-Choice
QA (MCQA), and Multi-Modal QA. We distin-
guish WSC as a separate category as it only has a
test set which necessitates unsupervised or com-
monsense knowledge acquisition methods, and
could be treated as either a classification, extractive,
or a generative task. Furthermore, it has been stud-
ied as an unsupervised problem for several years.

2.1 Winograd Schema Challenge

Inspired by examples from Winograd (1972) illus-
trating the challenges of natural language under-
standing and the importance of contextual knowl-
edge, the Winograd Schema Challenge (WSC) was
proposed by Levesque et al. (2012) and further de-
veloped by Morgenstern et al. (2016). An example
from WSC is shown below:

WSC item: The city councilmen refused the demonstrators a
permit because they [feared/advocated] violence.
Question: Who [feared/advocated] violence?

Winograd Schemas (sentences and questions
containing pronouns), are provided as input, and
the system must resolve the entity that the pro-
noun refers to. If the co-referent is changed from
feared to advocated in both the sentence as well
as the question, the answer changes from council-
men to demonstrators. The WSC challenge does
not provide a training dataset, but only a test set

for evaluating systems — this set originally had 60
samples which have now grown to 273 or 285. As
such, there is no explicit supervision available to
train machine learning models.

However, large QA datasets for pronoun res-
olution have been compiled, such as the Defi-
nite Pronoun Resolution Dataset (Rahman and
Ng, 2012), Winogender (Rudinger et al., 2018)
where the pair of sentences differ only by gender,
and KnowRef (Emami et al., 2019) with ambigu-
ous pronominal anaphora, and the WinoGrande
(WG) (Sakaguchi et al., 2020) which is a crowd-
sourced dataset of 44k samples with training-
development-test splits. Table 1 suggests that the
supervised ROBERTa model, trained on the WG
corpus is able to achieve a high accuracy of 90.1%
on the WSC test set. However, the same model
results in a lower accuracy of 79.4% on the WG
test set. Sakaguchi et al. (2020) have postulated
that the model might be picking up spurious cor-
relations in WSC, while at the same time being
unable to generalize on the WG test set itself. Thus
we argue that WSC and WSC-style challenges are
far from solved, motivating research into unsuper-
vised methods in this domain to address the issue
of spurious correlations and linguistic biases.

2.2 Extractive QA (EQA)

Extractive QA or Reading Comprehension, is the
task in which a text “context” or passage is pro-
vided as input along with a question, and EQA
systems are expected to extract the answer as a
span of text in the context. Multiple datasets have
been developed for EQA that we describe below.

SQuAD (Stanford Question Answering
Dataset) (Rajpurkar et al., 2016) contains 100k
open-ended questions based on context passages
from Wikipedia articles.  Answers to these
questions are present explicitly in the context and
do not require commonsense reasoning over the
context. Following is an example:

Paragraph: In February 2016, over a hundred thousand peo-
ple signed a petition in just twenty-four hours, calling for a
boycott of Sony Music and all other Sony-affiliated businesses
after rape allegations against music producer Dr. Luke were
made by musical artist Kesha. Kesha asked a New York City
Court to free her from her contract with Sony, but the court
denied the request.

Question: How many people signed a petition to boycott
Sony Music in 2016?

Answer: over a hundred thousand

SQuAD 2.0 (Rajpurkar et al., 2018) was pro-
posed as an addendum to SQuAD. It contains a
set of 50k “unanswerable” questions, i.e. questions




that do not have answers explicitly in the provided
context but may require systems to use external
knowledge and reasoning to find the answer.

NewsQA (Trischler et al., 2017) contains over
100k Q-A pairs crowd-sourced from 10k CNN
news articles (Hermann et al., 2015), with an-
swers being text-spans in the articles. The dataset
was curated such that question-answering would
require reasoning skills. Subsequently, datasets
for advanced reasoning tasks have been proposed,
such as HotPotQA (Yang et al., 2018) which re-
quires multi-hop reasoning, and Natural Ques-
tions (Kwiatkowski et al., 2019) which contains
questions entered into search engines by real users.
The data collection protocol for NQ, where the
users actively search for unknown answers to their
questions, is markedly different from previous
work where the question annotators typically know
the answer to their own question (Lee et al., 2019).

2.3 Multiple-choice QA (MCQA)

In contrast to extractive QA, in a multiple-choice
question answering (MCQA) task, a list of answer
choices is provided as input. Thus the system
must interpret the question and predict an answer
from one of these choices. Datasets developed for
MCQA are listed below.

CommonsenseQA (Talmor et al., 2019) is a five-
way multiple-choice QA benchmark containing
9500 questions. Each question requires disam-
biguation of a target concept from three connected
concepts. These connected concepts come from
ConceptNet (Liu and Singh, 2004), which is a large
knowledge-base that capture a diverse range of
commonsense concepts and relations about spa-
tial, physical, social, temporal, and psychological
aspects of everyday life. As such, a QA task con-
structed using ConceptNet is challenging.

aNLI (Bhagavatula et al., 2019) is intended to
judge the abductive reasoning ability of QA sys-
tems to form possible explanations for a given set
of observations. The task is to find a hypothesis
(from a list of choices) that explains an input “post-
observation” given a “pre-observation”. As such,
the task calls for an understanding of the sequential
occurrence of events. Following is an example:

Observation 1: Jim was working on a project.
Observation 2: Luckily, he found it in a nearby shelf.
Hypothesis 1: Jim found he was missing an item. v’
Hypothesis 2: Jim needed a certain animal for it. X

SociallQA (Sap et al., 2019) is a dataset contain-
ing 3-way multiple-choice questions that require
reasoning about social interactions and implica-
tions of events, given a passage about a social sit-
uation as context. Several question types in this
dataset are derived from the Atomic inference di-
mensions (Sap et al., 2019), such as actor intention,
actor motivation, effect on the actor and others, etc.

Science-based Question Answering: Several
MCQA datasets require an ability to answer scien-
tific questions at different difficulty levels. The AI2
Reasoning Challenge (ARC) (Clark et al., 2018)
contains 8000 four-way multiple-choice science
questions and answers along with a large corpus
of 14 million scientific facts that are necessary
to answer the questions. These questions require
multi-hop reasoning, i.e. the ability to combine in-
formation spread over multiple disconnected facts.
OpenBookQA (Mihaylov et al., 2018) is a 4-way
MCQA dataset, for which partial information from
a small corpus of 3000 facts is necessary to an-
swer the question. Systems are free to retrieve the
other partial information from any external source.
QASC (Khot et al., 2020), is an 8-way MCQA
dataset, for which questions can be answered by
exactly two facts from an associated corpus.

2.4 Multi-modal QA

Question-answering has also been extended to
questions about images or videos. VQA-
v2 (Goyal et al., 2017), VizWiz (Gurari et al.,
2018), GQA (Hudson and Manning, 2019), and
CLEVR (Johnson et al., 2017) are major bench-
marks for image-based question answering, where
the answers are open-ended words or short phrases.
VQA-CP-v2 (Agrawal et al., 2018) is a reorgani-
zation of VQA-v2 that seeks to measures the out-
of-distribution generalization ability of the ques-
tion answering system. Reasoning aspects have
also been explored for multi-modal QA, such as
Visual Commonsense Reasoning (Zellers et al.,
2019) focusing on commonsense reasoning and
rationalizing in a four-way multiple-choice task,
OK-VQA (Marino et al., 2019) that requires reason-
ing with external knowledge, VQA-LOL (Gokhale
et al., 2020) focusing on logical questions, and
introspective sub-questions in (Selvaraju et al.,
2020). In the domain of video question answering,
VideoQA (Yang et al., 2003), MSR-VTT-QA (Xu
et al., 2017), MovieQA (Tapaswi et al., 2016), and
TVQA (Lei et al., 2018) have been proposed.



Approach Accuracy
RoBERTa-WG (Sakaguchi et al., 2020)* 90.1
K-Parser (Sharma et al., 2015) 53.0
Modified Skip-Gram (Zhang and Song, 2018) 60.3
BERT Inner Attention (Klein and Nabi, 2019) 60.3
BERT-MASKEDWIKI (Kocijan et al., 2019) 61.9
UDSSM (Wang et al., 2019) 62.4
Ensemble LMs (Trinh and Le, 2018) 63.7
CSS (Klein and Nabi, 2020) 69.6
GPT-2 (Brown et al., 2020) 70.7
WSC Knowledge Hunting (Prakash et al., 2019) 71.1

Table 1: Comparison of the different unsupervised
methods on the Winograd Schema Challenge. (*) in-
dicates supervised method.

3 Unsupervised Methods for QA

In this section, we describe the different approaches
to unsupervised QA. Results on the respective
benchmark datasets are shown in Tables 1, 2, and 3.

3.1 Winograd Schema Challenge

Semantic Parsing and Sample-guided Graph-
based Reasoning. The method in (Sharma et al.,
2015) utilizes semantic parsing and information
retrieval to gather similar sentences with disam-
biguated pronouns using the original schema sen-
tence as a query. Question answering is guided
using a graph-based reasoning algorithm defined
over the output of the semantic parser, exploiting
the retrieved unambiguous sentence structure.

Skip-Gram and Semantic Dependencies Pre-
Training. Zhang and Song (2018) propose a
modified skip-gram objective for pre-training word
embeddings to predict semantic dependencies be-
tween verbs. A set of vector-space models are
trained to capture the verb meaning and transferred
to related ambiguous pronouns.

Word Attention Scores. Wang et al. (2019) pro-
pose Unsupervised Deep Structured Semantic Mod-
els (UDSSM), in which a BiLSTM is trained to
compute contextual word embeddings and use
the word attention scores between ambiguous pro-
nouns and the noun as the prediction scores. Ex-
tending the previous work, Klein and Nabi (2019)
directly exploit the inner attention layers of BERT
to compute a maximum over the attention scores
between the pronoun and the noun.

Pre-training on Masked Noun or Entity Predic-
tion. Kocijan et al. (2019) construct a synthetic
dataset called MaskedWiki, crawled from English

Wikipedia to pre-train a language model for a syn-
thetic masked-noun prediction pseudo-task. In this
task, a noun-word is masked, and the model is
asked to predict the word. Ye et al. (2019) adopt
a “align, mask, and select (AMS)” strategy where
entities that are connected with ConceptNet are
masked, and the model is asked to predict among a
list of similar candidate entities.

Large Language Models. An ensemble of large
pre-trained models was first utilized by Trinh
and Le (2018) and GPT is evaluated on WSC
by Brown et al. (2020). Prakash et al. (2019) extend
a language model with a knowledge hunting strat-
egy using a probabilistic soft-logic framework with
hand-crafted rules and entity alignment strategy. A
similar knowledge-hunting approach is evaluated
on Winogrande dataset by Sakaguchi et al. (2020).

Contrastive Self-Supervision. Klein and Nabi
(2020) study a self-supervised learning approach
by exploiting the structural information present in
Winograd Schema pairs — if one word is changed,
the pronoun becomes the coreference of a differ-
ent noun. A contrastive margin loss is defined to
operate on a particular sentence’s probable answer
candidates and a mutual exclusion loss operating
on a pair of sentences.

3.2 Extractive QA

Unlike the unsupervised methods for WSC which
acquire commonsense knowledge from word em-
beddings, knowledge hunting, or large-scale pre-
training of language models, unsupervised methods
for EQA focus on synthesizing question-answer
pairs given a text passage. Using these synthetic
data, a QA model can be trained, and evaluated
on existing human-authored EQA benchmarks de-
scribed in Section 2.2. Below, we discuss various
question-answer pair generation methods.

Cloze Generation. In Cloze Generation, a tex-
tual passage is divided into a preliminary introduc-
tion P and a trailing part from which the question
@ and the answer A are selected. The answer-span
is selected first, such that it is present in both the
premise and question, and is replaced with a place-
holder in the question as shown below:

Passage: Autism is a neuro-developmental disorder character-
ized by impaired social interaction, verbal and non-verbal ...

Question: People with autism tend to be a little aloof with
little to no .

Answer: social interaction.

Cloze generation for training was proposed Dhin-




SQuAD 1.1 NewsQA
BERT-Large (*) 85.1/91.8 N/A/73.6
BERT-Large +
(Dhingra et al., 2018)  28.4/35.8 18.6/27.2
(Lewis et al., 2019) 442 /54.7 17.9/27.0
(Fabbri et al., 2020) 46.1/56.8 21.2/294
(Li et al., 2020) 61.1/71.4 32.1/45.1

Table 2: Comparison of different unsupervised meth-
ods on extractive QA task. Exact Match and F1 scores
are reported. (*) indicates supervised method.

gra et al. (2018), with ground-truth answer-spans
being a sequence of overlapping text between the
introduction passage and the trailing part.

Unsupervised Cloze Translation. On the other
hand, Lewis et al. (2019) select answer spans from
noun-phrases as well as named-entities, and present
four methods of unsupervised cloze translation,
adapted to convert a cloze-style question-answer
pair to a more natural question-answer pair: (1)
Identity Mapping, where original cloze-style pairs
are evaluated, (2) Clozes, where a random perturba-
tion, word-ordering change, and random or heuris-
tics based “Wh-word” is prepended, (3) rule-based
question generation (Heilman and Smith, 2010)
using Wh-movement via syntactic transformation,
and (4) a Seq-2-Seq neural model trained in an un-
supervised fashion with two non-parallel training
corpus, the source Cloze-style questions, and the
target natural questions. The training process is
similar to translation models (Lample et al., 2018)
with a bidirectional combination of in-domain
training using denoising autoencoding and cross-
domain training using online-back-translation.

Retrieval and Template-based Question Gener-
ation. Fabbri et al. (2020) propose a two-step
method as an extension to the above work. First,
the context is used to retrieve similarly-structured
sentences. These sentences are then used to gener-
ate questions using template-based methods. Given
a context of the format:

[FRAGMENT I][ANSWER][FRAGMENT II]

a template of the form: “Wh + II + I + ?” is used
to construct the question, with a Wh-word replacing
the answer-word in the question.

RefQA and Iterative Refinement. There are
several limitations of using Cloze Generation as
the only source of question-answer pair generation.
There are significant lexical overlaps between the

generated questions and the paragraph, which al-
lows the QA model to predict the answer simply
via word matching, thereby affecting generaliza-
tion. Moreover, the answer category is limited to
the named entity or noun phrase, further restricting
the model’s coverage. To mitigate these challenges,
Li et al. (2020) propose RefQA, which utilizes
cited documents in parent Wikipedia context docu-
ments to extract clozes with minimal text overlap
with parent context. Furthermore, they propose
a dependency-parsing-based cloze-translation to
natural questions. First, the right child nodes of
the answer are retained, and the left children are
pruned. Second, if the child node’s subtree con-
tains the answer for each node of the parse tree, the
child node is moved to the first child node. Finally,
an in-order traversal is performed over the recon-
structed tree. A rule-based mapping is applied to
replace the special mask token of the cloze with an
appropriate “Wh-word”.

In Iterative Refinement, a neural model is first
trained with a generated question-answer pair. This
model is used for answer prediction to generate a
new answer A. If A is different from the original
answer A, then this new answer span is used as
a seed for a new question generation Q using the
above method. This process is repeated till no new
@, A pairs are generated.

Multi-hop Question Generation (Pan et al,
2020) utilizes multiple parallel data sources, such
as tables and associated paragraphs. A fixed set of
operators is defined to extract, generate, aggregate,
or merge information. Six pre-defined reasoning
graphs (similar to action templates) are used for
generating multi-hop questions.

3.3 Multiple-choice QA

Unsupervised MCQA methods rely on external
knowledge graphs such as Atomic (Sap et al., 2019)
and ConceptNet (Liu and Singh, 2004), or addi-
tional factual sentences as provided in the ARC,
QASC, and OpenBookQA datasets. Some meth-
ods also use large language models such as GPT-2
and Comet (Bosselut et al., 2019).

Information Retrieval Solver was proposed in
ARC (Clark et al., 2016), in which (context, ques-
tion, answer) options are used as queries. The top
retrieved sentence with a non-stop-word overlap
with the question-answer pair is used as a represen-
tative, and its corresponding ranking score (BM25)



CSQA aNLI SIQA ARC QASC OBQA
Random 20.0 50.0 333 25.0 12.5 25.0
RoBERTa (*) 78.5 85.6 76.6 67.0 618 72.0
RoBERTa 45.0 65.5 47.3 23.8 238 19.7
GPT-2 41.4 56.5 44.6 25.0 13.2 27.0
IR Solver 24.4 54.8 36.0 21.2 19.4 28.8
Self-Talk 32.4 N/A 46.2 N/A N/A N/A
Dynamic Gr. N/A N/A 50.1 N/A N/A N/A

Know. Trip. L. 38.8 65.3 48.5 284 272 338
Dataset Cons. 67.9 70.8 63.2 N/A N/A N/A

Table 3: Comparison of classification accuracies for
different unsupervised methods on multiple-choice QA
task. (*) indicates supervised method.

is used as answer confidence. The option with the
highest score is chosen as the answer.

Self-Talk (Shwartz et al., 2020) is an unsuper-
vised framework inspired by inquiry-based discov-
ery learning. In this approach, the system inquires a
language model such as GPT-2 or Comet with sev-
eral information-seeking questions such as “what
is the definition of [concept]” to discover addi-
tional background knowledge. After an answer
is generated, the method utlizes these additional
question-answer pairs as context. Finally, the an-
swer is selected from the given choices using the
least cross-entropy score for the sequence of text
generated by concatenating the generated context,
question, and the answer option.

Self-Supervised Knowledge Triplet Learning
(Banerjee and Baral, 2020) was proposed to pre-
train large language models such as ROBERTa, with
three representation learning functions that aim to
complete a knowledge triple given two of its el-
ements. For example, given a (context, question,
answer) triple, one function generates the context
given the QA pair, another generates the question
given the context and the answer. These functions
are used in conjunction to compute the distance
for each answer candidate from the generated an-
swer representation. Methods for knowledge graph
construction from unstructured text corpora are pro-
posed that use noun/verb phrases to create knowl-
edge triples required for pre-training.

Dynamic Neuro-Symbolic Knowledge Graph
Construction. In Bosselut et al. (2021), an ini-
tial study on zero-shot commonsense question an-
swering is conducted by formulating the task as
inference over dynamically generated common-
sense knowledge graphs. In contrast to prior stud-
ies for knowledge integration that rely on retrieval
from static knowledge graphs, this work requires

commonsense knowledge integration where con-
textually relevant knowledge is often not present
in existing knowledge bases. The method gen-
erates contextually-relevant symbolic knowledge
structures “on-demand” using generative neural
commonsense knowledge models such as Comet
and GPT-2. The method defines a reasoning algo-
rithm using this “on-demand” generated knowledge
graphs and selects the most supported answer op-
tion from the additional knowledge context.

Knowledge-driven Data Construction. In Ma
et al. (2021), a neuro-symbolic framework for zero-
shot question answering across commonsense tasks
is proposed. Guided by a set of hypotheses, the
framework studies how to transform various pre-
existing knowledge resources into a most effec-
tive form for pretraining models. The framework
varies the set of language models, training regimes,
knowledge sources, and data generation methods
and measures their impact across tasks. Extending
on Self-Talk and Knowledge Triplet Learning, it
compares and contrasts four constrained distractor-
sampling strategies. The key insight derived from
the work is while an individual knowledge graph is
better suited for specific tasks, a global knowledge
graph brings consistent gains across different tasks.
Also, preserving the task structure and generating
questions that are fair and informative helps large
language models learn more effectively.

3.4 Multi-Modal Question Answering

There are few unsupervised methods for VQA and
video-QA where human-authored QA pairs are un-
available. We categorize the methods in two cat-
egories, the first being unsupervised methods for
out-of-vocabulary generalization, and the second
being weakly supervised QA in which no human-
authored QA pairs are available, but other signals
such as captions and transcriptions can be used.

Zero-Shot VQA. In this task, the systems are ex-
pected to generalize to out-of-vocabulary questions
or answers during test-time. The task was first
proposed in (Teney and Hengel, 2016), in which
they introduced multiple methods based on pre-
trained word embeddings, object classifiers with
semantic embeddings, and test-time retrieval of
example images that are encoded in a semantic
embedding space. The final answer is generated
using a look-up table and nearest neighbor search
in answer-embedding space.



Unsupervised Task Discovery proposed by
Noh et al. (2019), utilizes existing large-scale vi-
sual datasets with annotations such as image class
labels, bounding boxes, and region descriptions to
learn rich and diverse visual concepts. The miss-
ing link between question-dependent answering
models and visual data without questions makes
learning visual concepts challenging. This is miti-
gated by learning a task conditional visual classifier
capable of solving diverse question-specific visual
recognition tasks, and transfering the classifier to
VQA models. To learn the unsupervised task dis-
covery, external structured knowledge sources such
as ConceptNet and WordNet are utilized.

Weakly Supervised from Captions Two recent
papers utilize captions to generate QA pairs for
image-based VQA and video QA, respectively.
Both the methods have shown a competitive perfor-
mance to existing supervised methods.

Banerjee et al. (2020) utilize various question
generation techniques such as cloze-generation,
template-based methods, and semantic role-
labeling, using the image captions as context. Para-
phrasing using back-translation is employed for lin-
guistic diversity. Particular object entity-based and
yes/no based questions are generated following the
process introduced in COCO-QA (Ren et al., 2015).
In semantic role labeling (FitzGerald et al., 2018),
the role-labels are expressed as question-answer
pairs. For example, for the caption “A girl in a
red shirt holding a skateboard sitting in an empty
open field", Q-A pairs such as ( “What is someone
holding?”, “a skateboard”) are generated.

In (Yang et al., 2020), captions for a huge set of
videos are generated using automated speech recog-
nition. A pre-trained transformer model on SQuAD
is used for generating question-answer pairs from
these pre-processed captions.

4 Related Paradigms of Learning

Self-Supervised Pre-Training. Self-supervised
learning leverages auxiliary tasks with input-output
samples extracted from unlabeled datasets, to learn
generalizable representations applicable to multi-
ple downstream tasks. Self-supervision has been
used to train transformer-based language models
using masked token prediction (Devlin et al., 2019;
Raffel et al., 2020), sequence prediction (Yang
et al., 2019), discriminator-based plausible alter-
native prediction (Clark et al., 2019).
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Figure 1: Discrepancy between dataset questions and
generated questions. Left: Plot from Lewis et al. (2019)
showing a comparison of question lengths for various
generation methods. Right: tSNE plot from Banerjee
et al. (2020) comparing question embeddings for VQA.

Low-Resource Question Answering. In many
cases, training datasets for QA may be small in size,
thereby affecting model generalization. To alleviate
this, methods utilizing reinforcement learning for
question generation (Yang et al., 2017), cloze ques-
tion generation (Dhingra et al., 2018), and meta
learning (Yan et al., 2020) have been proposed.

Zero-Shot and Few-Shot Learning. An ap-
proach is to utilize domain adaptation methods to
train the model on a large-scale source task and to
finetune it on the low-resource target task (Kadlec
et al., 2016; Golub et al., 2017; Wiese et al., 2017;
Chung et al., 2018). However this approach as-
sumes access to a labeled source dataset. Recently,
GPT-3 (Brown et al., 2020), a large language model
(175B parameters) has been trained with huge text
corpora (300B tokens). While GPT-3 is able to
perform a wide variety of NLP tasks after this ex-
pensive pre-training, the zero-shot performance is
still below some unsupervised methods discussed
in this survey, such as 70.2% on WSC and 59.5%
on SQuAD-v2. This in our opinion, makes a strong
case for further research in unsupervised learning,
especially with regards to generalization.

5 Challenges

Aforementioned methods for unsupervised QA
have unveiled challenges related to reasoning abil-
ities and generalization that need to be addressed.
We discuss these challenges below.

Question-Answer Pair Generation. Although
question-answer pair generation has improved a
lot over the years, there is still a gap to fill that
is observed when purely unsupervised methods
are compared to self-training methods such as (Al-
berti et al., 2019; Puri et al., 2020) that use human-
authored questions and answers to train question-
generation models and then train neural readers



only using the generated synthetic question-answer
pairs. Figure 1 shows the gap between generated
questions (Lewis et al., 2019) and original SQuAD
dataset distribution (left), and VQA-v2 and GQA
vs. synthetic questions from (Banerjee et al., 2020).
Further improving non-parallel unsupervised cloze
translation, utilizing existing lexical and knowledge
graphs for additional supervision, and improving
parsing-based question generation would be an in-
teresting direction to bridge this gap.

Answer-Phrase Generation. Named-entities
and noun-phrases are the current focus for answer
generation. While recent methods (Banerjee et al.,
2020) have introduced semantic-role labeling
to generate a answer-phrases with diversity in
parts-of-speech generated, there remains a large
room for improving synthetic answer generation.

Training Sample Selection. As the procedural
question-answer pair generation does not restrict
the size of the synthetic training corpus, there is
a limit to positive inductive bias that can be incor-
porated into certain neural architectures, limiting
the generalization ability and moving towards over-
fitting to the synthetic corpus. Utilizing train sam-
ple selection, adversarial sample selection, hard-
sample mining, and curriculum learning would be
the next step to understand which samples are more
useful to learn question answering.

Reasoning Abilities. Although commonsense
reasoning is required in WSC, aNLI, and other
commonsense-related tasks, other tasks such as
complex multi-hop reasoning, abductive reason-
ing where the hypotheses are generated and not
selected, quantitative, temporal, qualitative, and
non-monotonic reasoning, all remain uphill battles.
Similarly, in visual question answering, unsuper-
vised question-answer pair generation with com-
plex spatial reasoning in focus is still unexplored.
Meanwhile (Ye and Kovashka, 2021) have shown
that supervised models can take advantage of short-
cuts and co-occurring words between the question
and answer-choices in VCR (Zellers et al., 2019).
Unsupervised learning could help break these spu-
rious shortcuts in order to boost generalization.

Evaluation Metrics used in current question an-
swering benchmarks range from classification ac-
curacy for multiple-choice QA, exact match, and
F'l-score for extractive QA, to a custom visual
question answering metric incorporating multiple

allowed phrases for VQA tasks. While there has
been work towards generative question answering
models (Bhakthavatsalam et al., 2021), existing
evaluation metrics designed for classification or
MCQA tend to over-penalize methods that generate
correct but descriptive answers (Goyal et al., 2017;
Banerjee et al., 2020). It is intractable to annotate
datasets with all possible answers to a question
given that some questions may be subjective and
have multiple answers, and in lieu of the plethora
of synonymous or equivalent phrases in natural lan-
guage. Hence, there is a need for newer metrics that
judge multi-word descriptive paraphrased versions
of the correct answer equally. While the issue of
better evaluation has attracted attention for the tasks
of machine translation (Edunov et al., 2020) and
text generation systems (Gehrmann et al., 2021),
it remains under-explored in the QA domain, with
few works such as (Luo et al., 2021) which seeks
to develop automated methods to augment answer
annotations with equivalent and alternate answers.

6 Outlook

In a typical QA setting, specific words in the text
may not be enough to answer the question since
contextual knowledge may be required, as is aptly
highlighted by the Winograd Schema Challenge.
Collection of such external knowledge covering
a wide range of knowledge and reasoning abili-
ties is often infeasible. Therefore development of
techniques that do not rely on the collection of
datasets is important for low-resource settings and
for adapting models to new domains, or when the
knowledge-base changes over time — for instance
Wikipedia entries on most topics are updated over
time. There has been recent interest in ‘“Test-Time
Training” (Sun et al., 2020) for image classifica-
tion —an approach that turns a single unlabeled test
sample into a self-supervised learning problem on
which the model is trained before making a predic-
tion. This paradigm could be potentially extended
to QA tasks for improving generalization without
reliance on human-authored data. Spurious correla-
tions and biases bring in imminent risks, especially
when it comes to socio-cultural biases that have
been shown to percolate into training datasets. Un-
supervised learning can potentially serve as a tool
to not only mitigate these risks but also study their
impact, as any observed biases could be attributed
back to data synthesis methods.



Ethical Consideration.

Linguistic biases, social-cultural and historical bi-
ases have been shown to not only exist in human-
annotated datasets used for many NLP tasks (Hen-
dricks et al., 2018; Bender et al., 2021; Kurita et al.,
2019; Sheng et al., 2019), but also result in the
model learning these biases to make predictions.
Unsupervised learning methods discussed above
use a fixed set of question-answer pair generation.
While this results in lesser diversity than natural
and human-annotated corpora, it enables us to con-
trol the training data. This control over training
data may allow researchers to trace back the cause
of biased predictions to one or more data genera-
tion mechanisms. This could help the community
identify potential sources of bias and incorporate
these findings for constructing new datasets and
also for debiasing existing datasets.
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