Visual Question Answering with Annotation-Efficient Zero Shot Learning
under Linguistic Domain Shift

Pratyay Banerjee, Tejas Gokhale, Yezhou Yang, Chitta Baral

Arizona State University
pbanerj6, tgokhale, yz.yang, chitta@asu.edu

Abstract

Methodologies for training VQA models assume the avail-
ability of datasets with human-annotated Image-Question-
Answer (I-Q-A) triplets for training. This has led to a heavy
reliance and overfitting on datasets and a lack of gener-
alization to new types of questions and scenes. Moreover,
these datasets exhibit annotator subjectivity, biases, and er-
rors, along with linguistic priors, which percolate into VQA
models trained on such training samples. Captions on the
other hand are descriptive and less subjective, and allow us
to generate a diverse variety of Q-A pairs. We study whether
models can be trained only with images and associated text
captions, without any human-annotated Q-A pairs. We train
models with procedurally generated Q-A pairs from captions
using techniques, such as templates and annotation frame-
works like QASRL. Since our Q-A pairs are synthetic, they
exhibit a linguistic domain shift from the questions in VQA
data and a label-shift in the answer-set, i.e. a zero-shot learn-
ing task. As most state-of-the-art VQA models rely on dense
and costly object annotations extracted from object detectors,
we propose spatial-pyramid image patches as a simple but ef-
fective alternative to object bounding boxes, and demonstrate
that our method is label-efficient. We benchmark on VQA-
v2, GQA, and on VQA-CP which contains a softer version of
label shift. Our zero-shot VQA methods surpass prior super-
vised methods on VQA-CP and approaches state-of-the-art
models without object features in fully supervised setting.

1 Introduction

Visual question answering (VQA) has emerged as a cru-
cial task in visual understanding. In fact (Malinowski and
Fritz 2014b) posed it as a Turing test (1950), with the goal
of building VQA systems indistinguishable from humans.
Human-annotated datasets (2014a; 2015; 2018; 2019; 2019)
have been used to train and evaluate various VQA models.
Unfortunately, heavy reliance on these datasets for train-
ing has the unwanted side-effects of bias towards answer
styles, question-types (Chao, Hu, and Sha 2018), and spuri-
ous correlations with language priors (Agrawal et al. 2018).
Similar findings have been reported for natural language
datasets (Gururangan et al. 2018; Niven and Kao 2019) and
the resulting “Clever Hans Effect” (Kaushik, Hovy, and Lip-
ton 2019). As such, evaluation of VQA models on test-sets
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very similar in style to the training samples, is deceptive and
inadequate, and not a true measure of robustness.

So what is a way out? One line of work has focused
on balancing, de-biasing, and diversifying samples (Goyal
etal. 2017; Zhang et al. 2016). However crowdsourcing “un-
biased” labels is difficult and costly — it requires a well-
designed annotation interface, dedicated and able annota-
tors, and humongous human effort and time (Sakaguchi
et al. 2020). The alternative is to avoid the use of annota-
tions, and instead train models in an unsupervised manner
by synthesizing training data. These techniques, coined “un-
supervised” (Lewis, Denoyer, and Riedel 2019), come with
many advantages — first, human bias and subjectivity is re-
duced; second, the techniques are largely domain-agnostic
and can be transferred from one language to another (low
resource languages), or from one visual domain to another.
For instance, template-based Q-A generation methods from
CLEVR (Johnson et al. 2017) (which contains artificially
rendered images) are also used to generate Q-A pairs for
GQA (Hudson and Manning 2019) (which contains real-
world and more complex scenes) and also for the referring-
expressions task (Liu et al. 2019).

In this work, we train VQA models without using human-
annotated Q-A pairs. We utilize image-captioning datasets
which provide a multi-perspective concise description of
visible objects in an image, and procedurally generate
Q-A pairs using a self-supervised mechanism. We train
models using this synthetic data and only evaluate them
on established human-annotated VQA benchmarks: VQA-
v2 (Goyal et al. 2017), VQA-CP-v2 (Agrawal et al. 2018),
and GQA (Hudson and Manning 2019).

Why Captions? Image captioning, like VQA, is a corner-
stone of current vision-and-language research, and datasets
such as MS-COCO (Lin et al. 2014) contain captions that de-
scribe visual entitities such as objects and actions in images
of common objects and everyday scenes. During the con-
struction of the dataset (Chen et al. 2015), human caption
writers were instructed to refrain from describing things that
have happened in the past or in future, and “what a person
might say”. One the other hand, annotators of VQA (Antol
et al. 2015) were instructed to ask questions that “a smart
robot cannot answer, but a human can easily answer” and
“interesting” questions that may require “‘commonsense”’. A
different set of annotators provided answers to these ques-



tions and were allowed to “speculate” an answer that “most
people would agree on” or to simply provide a best guess.
For instance in Figure 2, the first VQA-v2 question is an ex-
ample of linguistic bias since most cars have four doors, and
the second question is subjective and so has multiple con-
tradicting answers from different annotators. Similarly the
first GQA question is ambiguous and could refer to either
the skier or the photographer. It has been shown multiple
answers may exist for questions in common VQA datasets
due to perceived difficulty of the question, ambiguity, and
subjectivity (Bhattacharya, Li, and Gurari 2019). Thus the
very nature of the data-collection procedure and instructions
for VQA brings in human subjectivity and linguistic bias
as compared to image-captioning annotations which are de-
signed to be simple, precise, and non-speculative. Moreover,
procedurally generating Q-A pairs from captions one can
create a diverse variety of questions that need deep image
understanding. These are our motivations for using captions
to synthesize Q-A pairs.

For the creation of Q-A pairs from image captions, we use
template-based methods similar to (Ren, Kiros, and Zemel
2015; Gokhale et al. 2020), along with paraphrasing and
back-translation (Sennrich, Haddow, and Birch 2016) for
lingustic variation. We also synthesize questions about im-
age semantics using the QA-SRL (He, Lewis, and Zettle-
moyer 2015) approach. Since our Q-A pairs are created syn-
thetically, there exists a domain shift as well as label (an-
swer) shift from evaluation datasets such as VQA-v2 and
GQA as shown in Figure 2, making this task zero-shot.

We evaluate two models, UpDown (Anderson et al. 2018)
and a transformer-encoder (Vaswani et al. 2017) based
model pre-trained on synthetic Q-A pairs and image-caption
matching task. To remove the dependence on object an-
notations needed to extract object features using Faster R-
CNN (Ren et al. 2015), we propose spatial pyramids of im-
age patches as a simple, effective, and annotation-efficient
alternative. To the best of our knowledge, this is the first
work on the unsupervised visual question answering, with
the following additional contributions:

e We introduce the self-supervised data synthesis frame-
work for creating Q-A pairs from captions, which include
multi-word answer phrases.

e We propose pre-training tasks that use spatial pyramids of
image-patches instead of object bounding-boxes, further
making our method label-efficient.

e We perform extensive experiments and analyses under
zero-shot and fully-supervised settings, and establish
benchmarks on VQA-v2, VQA-CP, and GQA.

e Our model achieves state of the art accuracy on the zero-
shot VQA task and thus serves as a strong baseline for
future work on zero-shot VQA.

2 The Many Faces of Generalization in VQA

Preliminaries: Given an input question () about an image
I, the goal for visual question answering is to provide an
answer A. Thus for a VQA model, the (Q, I) pair belongs
to the domain, while the answer belongs to the label-space.
Let S be the space of source questions available for train-

(a) Only Domain Shift

(b) Only Label Shift (c) Both

Figure 1: Aspects of generalization: domain shift implies
that SNT' # T, while label shift implies that AsNAp # Ar.

ing with the corresponding answer-set Ag, and T that of tar-
get questions with answer-set .A7. The aim of a VQA model
is to generalize to T'. Let Z be the set of images and Qg and
Q7 be the set of questions in source and target datasets, both
of which are split into sets of training and test samples. Let
Dg, Dr denote the source and target datasets, given by:

Dgrain — {(L Q)lQ c ngn,f c Itrain}7 (])
Dtsest — {(IvQ)lQ c Qg‘ist7] c Itest}’ (2)
D' ={(1,Q)|Q € QF*", I € T"**'}. 3)

Ttrain Ttest are independent and identically distributed
and Z'"¥"m N 7t*st = (). Then two aspects of generalization
can be defined as shown in Figure 1, domain shift i.e.
generalization to a new domain of inputs, characterized by
S NT # T, and label-shift, i.e. generalization to novel
answers, characterized by Ag N Ar # Ar.

Related Work: Work in VQA has recently attracted at-
tention from various unique (but scattered) points of view
such as robustness, reduction of biases and spurious corre-
lations, and transfer to other question-types. Unfortunately,
such work has not been formulated in the conventional lan-
guage of domain generalization. We review related work and
unite it under the umbrella of the formalism of Figure 1.

Performance under domain shift has been evaluated for
new domains of test questions with unseen words (Teney
and Hengel 2016), unseen objects (Ramakrishnan et al.
2017), novel compositions (Johnson et al. 2017; Agrawal
et al. 2017) and logical connectives (Gokhale et al. 2020).
Adaptation to different datasets with varying linguistic
styles (Chao, Hu, and Sha 2018; Xu et al. 2019; Shrestha,
Kafle, and Kanan 2019) and different reasoning capa-
bilities (Kafle and Kanan 2017) has also been studied.
Other work seeks to answer target questions that are sub-
questions (Selvaraju et al. 2020), or are implied (Ribeiro,
Guestrin, and Singh 2019) or entailed (Ray et al. 2019) by
source questions.

Label shift or Prior Probability Shift (Storkey 2009) has
been implicitly hinted at in the VQA-CP challenge (Agrawal
et al. 2018), where the conditional probabilities of answers
given the question, P(A|Q), for the train and test splits are
designed to be distant. The ability to perform a task amidst
label-shift is typically termed as zero-shot learning (Lam-
pert, Nickisch, and Harmeling 2009; Farhadi et al. 2009;
Palatucci et al. 2009). In the VQA-v2 dataset (Goyal et al.
2017), questions are created for each image ¢ € 7 by human
workers, and the dataset is balanced with respect to P(A|Q).
This is an example of neither domain shift nor label shift.



Captions - Question Answer(Confidence)
- Acar that seems to be parked % 1. How many doors does the gray car have ? 4(1.0)
illegally behind a legally parked car g2 Why does the windshield look opaque ? Clear (0.6), No (0.3), Reflection (0.9)
- A couple of cars parked in a busy =
street sidewalk 5 1. How is something parked ? lllegally (1.0)
- Cars try to maneuver into parking %- 2. 1s therea truck ? No (1.0)
spaces along a densely packed sireet. % 3.1s ita couple of cars parked in a busy streetsidewalk? Yes (1.0)
- two cars parked on the sidewalk on = . .
the street S 4. Where does something maneuver? Into Parking Spaces (1.0)
i a

GQA

- A manin skies is coming up the hill

- A skier is passing a competition race
marker

- A man takes a picture of a skier .

- A cross-country skier is competing at
night in snow

npwNE N

Synthetic (Ours)

More examples can be found in the Appendix.

Is the man on the left or on the right ?
Who is wearing the jersey ?

What is someone passing ?
When is someone competing ?
Who is coming ?

Is that @ man in skateboard coming up the hill ? No
Where is someone coming?

Right (1.0)

Man (1.0)

A competitionrace marker (1.0)
At night (1.0)

A man in skiis (1.0)

Up the hill (1.0)

Figure 2: Examples of images from VQA and GQA along with the human-annotated Q-A pairs and our synthetic pairs.

Our Problem Statement: Our work deals with learning
VQA using only images with associated captions, without
any labeled Q-A pairs. Consider an image captioning dataset
D¢ with captions C' for each image in Z!"*™ as shown in
Figure 2. Using these captions, we wish to answer questions
about test-images in Z?*** such that none of these images
were previously observed (Z¢7%" N I**s* = (). For this, we
create synthetic questions Q%" and answers AZ " for
training. As such, a linguistic domain shift exists between
these synthetic source questions and human-annotated target
questions from datasets such as VQA-v2 and GQA. Simi-
larly, owing to the automated nature of our Q-A pair gen-
eration, a label-shift is also observed. In this paper, for the
first time, we address the harder and unexplored problem of
zero-shot VQA trained on procedurally generated samples
exhibiting both domain-shift and label-shift.

3 Self-Supervised Q-A Synthesis Framework

In this section, we detail our framework for procedurally
generating Q-A pairs using captions as input. Captions C'
and object-words O are used as input. These object words
are estimated from the caption by using simple heuristics
such as, extracting noun-phrases and using numerical quan-
tifiers in the caption as soft approximations of the cardinal-
ity of objects, using Spacy (Honnibal and Montani 2017).
For example, if a caption is “There are four apples placed
on a basket.”, we extract { “apples”, “basket”} as the ob-
jects, and {4, 1} as their respective counts. If object-words
are available explicitly, we used them as is.

3.1 Question Generation

Question generation in itself is a complex domain and sev-
eral studies are dedicated to it (2017; 2019). We approach it
conservatively, using template-based methods and QA-SRL-
based semantic role labeling for question generation, and
with paraphrasing and backtranslation for improving the lin-
guistic diversity of template-based questions. Questions are
categorized based on their answer types; Yes-No, Number,
Color, Location, Object and Phrases.

Template-based: To create Yes-No questions, the caption
is processed as follows: first modal verbs are removed and

then, a randomly chosen question prefix such as “is there”,
“Is this”, "does this look like” is attached. For instance, the
caption “A man is wearing a hat and sitting” is converted
to “Is there a man wearing a hat and sitting”, for which the
answer is “Yes”. To create the corresponding question with
answer “No”, we use either a negation, or replace the object-
word with an adversarial word or antonym, thus obtaining
“Is there a dog wearing a hat and sitting” for which the an-
swer is “No”. An adversarial word refers to an object not in
the image, but similar to objects in the image. To compute
similarity, we use Glove (2014) vector embeddings.

For Object, Number, Location, and Color questions, we
follow the procedure similar to COCO-QA (2015). To cre-
ate “what” questions for the Object type, we extract objects
from captions as noun phrases, replace them with “what”,
and rephrase the question such that it starts with “what”. The
rephrasing is done by first splitting long sentences to shorter
ones, converting indefinite determiners to definite, replacing
potential answer options with “what”. We follow a similar
procedure for Number questions; we extract numeric quan-
tifiers of noun phrases, and ask “how many” and “what is the
count” questions. Color questions are generated by locating
the color adjective and the corresponding noun phrase, and
replacing them in a templated question: “What is the color of
the object?”. Location questions are similar to Object ques-
tions, but we extract phrases with “in”, “within” to extract
locations, with places, scenes, and containers as answers.

Semantic Role Labeling: QA-SRL (2015) was proposed
as a paradigm to use natural language to annotate NLP
data, by using Q-A pairs to specify textual arguments and
their roles. Consider the caption “A girl in a red shirt
holding a skateboard sitting in an empty open field”.
Using QA-SRL with B-I-O span detection and sequence-
to-sequence models (FitzGerald et al. 2018), for “when”,
“what”, “where”, and “who” questions, we obtain the
following Q-A pairs belonging to the Phrases category:
(what is someone holding?, a skateboard)

(who is sitting?, a girl in a red shirt holding a skateboard)
(where is someone sitting?, an empty open field)
QA-SRL questions are short and use generic descriptors
and pronouns such as something and someone instead of
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Figure 3: Discrepancy between VQA-v2, GQA and our synthetic samples. Left: t-SNE plot of question embeddings. Right:
Dataset statistics for our generated Q-A pairs. Train/Validation sample counts for benchmark datasets are provided.

elaborate references, while the expected answer phrases
are longer and descriptive as shown above. Thus to answer
these, greater semantic understanding of the image is
required. For captions that do not contain verbs that can be
labelled with semantic roles, we skip QA-SRL and only use
template-based methods for question generation.

Paraphrasing and Back-Translation: In order to in-
crease the linguistic variation in the questions, we apply
two natural language data augmentation techniques, para-
phrasing and back-translation. To paraphrase questions, we
train a TS (Raffel et al. 2019) text generation model on the
Quora Question Pairs Corpus (2017). For back-translation
we train another T5 text generation model on the Opus cor-
pus (2012), translate the question to an intermediate lan-
guage (Francais, Deutsche, or Espafiol) and re-translate the
question back to English. For example, “Is the girl who is to
the left of the sailboats wearing a backpack?” is translated
to ‘‘La chica que estd a la izquierda de los veleros lleva
mochila?” in Espafiol, and back-translated to “Does the girl
to the left of the sailboats carry a backpack?”.

3.2 Comparitive Analysis with VQA-v2 and GQA

Answers to QA-SRL questions are more descriptive with use
of adjectives, adverbs, determiners, and quantifiers, com-
pared to current VQA benchmarks, which typically contain
one-word answers, as seen in Figure 2. Similarly, questions
have less descriptive subjects due to the use of pronouns.
Our synthetic data contains 90k unique answer phrases,
compared to 3.2k in VQA and 3k in GQA. We observe there
are around 200 answers that are not present in our answer
phrases, such as time (11:00) and proper nouns (LA Clip-
pers), both of which are not present in caption descriptions.

The style of some of our synthetic questions such as
counting questions, object presence/absence questions cre-
ated by template-based question generation, is also found in
VQA and GQA. On the other hand, QA-SRL questions re-
quire semantic understanding of the actions (verb) depicted
in the image, which are rare in VQA and GQA. We quan-
tify this by plotting the t-SNE components of document vec-
tor embeddings of the questions from VQA, GQA and our
synthetic data, in Figure 3. We can observe that the human-
annotated questions from VQA and GQA have a significant
overlap, whereas our synthetic dataset questions are a dis-
tinct cluster. Learning to perform visual question answering
from disparate linguistic styles, and evaluating on conven-
tional benchmarks is the challenge we address in this paper.

4 Method

In this section, we describe our visual question answer-
ing model. Recent approaches, such as LXMERT (Tan
and Bansal 2019), VIiIBERT (Lu et al. 2019), and
UNITER (Chen et al. 2019) all use deep transformer-
encoder architectures and pre-train using a combination of
multiple image captioning and VQA datasets such as Con-
ceptual Captions (Sharma et al. 2018), SBU Captions (Or-
donez, Kulkarni, and Berg 2011), Visual Genome (Krishna
et al. 2017), and MSCOCO (Lin et al. 2014). Training on
such a huge collection of data is resource-intensive and
hence we train our models only on MSCOCO captions.
Moreover MSCOCO captions are of good quality, less noisy,
and provide multi-perspective descriptions for each image.

4.1 Spatial Pyramid Patches

“Bottom-Up” object region features (Anderson et al. 2018)
extracted from Faster R-CNN have become the de-facto im-
age features used in state-of-the-art VQA models, which do
not use the entire image, but only the features of the detected
objects as inputs for QA. Although object features are dis-
criminative, dense annotations are required for training and
additional large deep networks for extraction. Moreover, ob-
ject detection can be imperfect. For example, if an object
detection model detects only four out of six bananas in an
image, features of the other two bananas will not be used by
VQA models. Similarly, object detection is not reliable for
detecting rare objects (Wang, Ramanan, and Hebert 2019).
This is a problematic bottle-neck for VQA performance on
questions about counting or rare objects.

We take a step back and postulate that the use of fea-
tures of the entire image in context could reduce this bot-
tleneck. Image features extracted from a ResNet (He et al.
2016) trained for an image classification task on Ima-
geNet (Russakovsky et al. 2015) have been previously used
for VQA (2017). ImageNet mostly contains iconic (single-
object) images, making the feature extraction restrictive, as
VQA is often about non-iconic images, with questions about
relations between multiple objects. Inspired by Spatial Pyra-
mid Matching (2006) for image classification, we propose
spatial pyramid patch features to represent the input image
into a sequence of features at different scales. For an input
image I, we use a ResNet (pretrained on ImageNet) to ex-
tract features from a set of image patches {I,,..., I, },
where I}, is the image divided into a k; X k; grid of patches.
Larger patches encode global features and relations, while
smaller patches encode local and low-level features.
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[SEP]
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Figure 4: Our model architecture makes the use of spatial pyramids of image patches as inputs to the Encoder, which is trained

for three pre-training tasks as shown.

4.2 Encoder

Our Encoder model is similar to the UNITER single-
stream transformer, where the sequence of word tokens
w = {wi,...,wr} and the sequence of image patch fea-
tures v = {vy, ..., vk } are taken as input. We tokenize the
text using a WordPieces (Wu et al. 2016) tokenizer simi-
lar to BERT (Devlin et al. 2018), and embed the text tokens
through a text-embedder. The visual features are projected to
a shared embedding space using a fully-connected layer. A
projected visual position encoding, indicating the patch re-
gion (top-right, bottom-left) is added to the visual features.
We concatenate both sequences of features and feed them to
L cross-modality attention layers. Parameters between the
cross-modality attention layers are shared to reduce param-
eter count and increase training stability, and a residual con-
nection and layer normalization is added after cross-modal
attention layer similar to Vaswani et al..

4.3 Pre-training Tasks

We train the Encoder model using three pre-training tasks:
Masked Language Modeling, Masked Question Answering,
and Image-Text Matching.

Masked Language Modeling (MLM) We randomly
mask 15% of the word tokens from the caption and ask the
model to predict them. For the caption “There is a man wear-
ing a hat”, the model gets the input “There is [MASK] wear-
ing a hat”, and is trained to predict this masked token. With-
out the image, there can be multiple plausible choices, such
as “woman”, “man”, “girl”, but given the image the model
should predict “man”. This task has been shown to effec-

tively learn cross-modal features (2019).

Masked Question Answering (MQA) In this task, the an-
swer tokens are masked, and the model is trained to pre-
dict the answer tokens. For example in Figure 2, for the in-
put “ When is someone competing? [MASK] [MASK]”, the
model should predict, “at night”. To answer such questions,
the model needs to interpret the image.

Image-Text Matching (ITM) For each image, we use the
five captions provided by MS-COCO as positive samples.
To obtain negative samples, we randomly sample captions
from other images that contain a different set of objects. We
train the model on a binary classification task (matching /
not matching) for each image-caption pair.

For VQA and ITM, we use the final layer representa-
tion 2/¢LS! of [CLS] token (w;), and feed it to a feed-
forward layer followed by a softmax. For MLM and MQA
we feed corresponding token representations to a different
feed-forward layer. We train the model using standard cross-
entropy loss for all three tasks.

4.4 Sub-phrase Weighted Answer Loss

As observed before, the questions generated in QA-SRL
have long answer phrases. For instance “What is parked?”
has the answer “two black cars”. We extract all possi-
ble sub-phrases that can be alternate answers, but assign
them a lower weight than the complete phrase, computed
as Wy, = WordCount(sub)/WordCount(ans). Thus “two
black cars” has a weight 1.0, while the extracted sub-phrases
and weights are: (two, 0.33), (2, 0.33), (black, 0.33), (cars,
0.33), (two cars, 0.66), (2 cars, 0.66), (black cars, 0.66),
(car, 0.33). This enforces a distribution over the probable an-
swer space instead of a strict “single true answer” training.
We train the model with this additional binary cross-entropy
loss, where given the input question, the model predicts a
weighted distribution y,,, over the answer vocabulary.

Lswa = ﬁBCE(U(Z[CLS])7 Ywa)- 4)

Finally the full loss function with « and 3 as loss scale
factors is:

L=Lyvim+Lyvga+ oLl + BLswa. 5)

5 Experimental Setup

Datasets We evaluate our methods on the three popular
visual question answering benchmarks: VQA-v2, VQA-CP
v2, and GQA. Answering questions in VQA-v2 and VQA-
CP v2 requires image and question understanding, whereas
GQA further requires spatial understanding such as compo-
sitionality and relations between objects. We evaluate our
methods under zero-shot (trained only on procedurally gen-
erated samples), and fully-supervised (where we finetune our
model using the associated train annotations) settings. We
report exact-match accuracies as our metrics for evaluation.

Training Our Encoder has 8 cross-modal layers with a
hidden dimension of 768. Our models are pre-trained for 40
epochs with a learning rate of 1e—5, batch size of 256, us-
ing Adam optimizer. For finetuning, we use a learning rate



Model All Yes-No Num Others

SAN (2016) 25.0 38.4 11.1 21.7
GVQA (2018) 31.3 58.0 13.7 22.1
UpDown (2018) 39.1 62.4 15.1 345
AReg(2017) 42.0 65.5 159 36.6
AdvReg (2019) 423 59.7 14.8 40.8
RUBI (2019) 471 68.7 20.3 432
(Teney and Hengel 2019)  46.0 58.2 29.5 443
Unshuffling (2020) 424 47.7 14.4 473
UpDn+CE+GS (2020) 46.8 64.5 154 45.9
LXMERT (2019) 46.2 42.8 18.9 55.5

ZSL+Objects+UpDown 40.8 67.4 28.6 30.2
ZSL+Patches+UpDown 41.2 68.5 29.8 30.0
ZSL+Patches+Encoder 47.3 734 39.8 35.6

Table 1: Unsupervised accuracy on VQA-CP-v2 test set. All
baselines are supervised methods trained on the train split. 2

Model All  Yes-No Num Others
GVQA (2018) 482 720 311 347
UpDown (2018) 65.3 81.8 44.2 56.1
RUBI (2019) 63.1 * * *
MCAN (2019) 704 858 537 607
VIIBERT (2019) 70.5 * * *
LXMERT (2019) 72.5 88.2 54.2 63.1
UNITER (2019) 72.7 * * *

ZSL + Objects + UpDown  41.4 68.1 27.6 29.4
ZSL + Patches + UpDown  40.6 67.8 28.4 29.2
ZSL + Patches + Encoder 46.8 72.1 34.4 34.1

FSL + Patches + UpDown  63.4 80.2 45.2 52.1
FSL + Patches + Encoder 65.3 80.5 48.94 56.2

Table 2: VQA-v2 Test-standard accuracies?. FSL models are
pretrained on synthetic samples, and further finetuned on
VQA-v2 train split. *not available

of le—5 or 5e—5 and batch size of 32 for 10 epochs. We
use a ResNet-50 pretrained on ImageNet to extract features
from image patches with 50% overlap, and Faster R-CNN
pretrained on Visual Genome to extract object features. All
our models are trained using 4 Nvidia V100 16 GB GPUs.

Baselines To measure the improvements due to our pro-
posed image patch features and SWA loss, we compare our
methods to the UpDown model Anderson et al., which uses
object bounding-box features. For the Zero-shot setting, we
compare our Encoder with UpDown when trained with spa-
tial features as well as object features. Pre-trained transform-
ers such as UNITER use large V&L corpora, dense human
annotations for objects and Q-A pairs and supervised loss
functions over these. Comparisons with such models are
therefore not fair in a ZSL setting; instead, we perform these
comparisons in a fully-supervised (FSL) setting.

6 Results

In this section, we discuss our results and outcomes from
analyses. ZSL refers to zero-shot setting and FSL refers to
our models further finetuned on the respective train split.

Model All  Binary Open
CNN + LSTM (2018) 46.6 61.9 22.7
UpDown (2018) 49.7 66.6 34.8
MAC (2018) 54.1 71.2 389
BAN (2018) 57.1 76.0 40.4
LXMERT (2019) 60.3 77.8 45.0
ZSL + Objects + UpDown  30.7 50.8 17.6
ZSL + Patches + UpDown  31.1 52.3 16.8

ZSL + Patches + Encoder 33.7 55.5 21.2

FSL + Patches + UpDown  46.4 64.3 314
FSL + Patches + Encoder 55.2 73.6 38.8

Table 3: GQA Validation split accuracies.’

Zero-shot Question Answering Tables 1, 2 and 3 summa-
rize our results on the three benchmark datasets respectively.
We can observe that our method outperforms specially de-
signed supervised methodsfor bias removal in VQA-CP. Our
procedurally generated Q-A pairs improve performance for
both UpDown and Encoder models, showing the method to
be effective, and that the improvements are model-agnostic.
Our Encoder model further improves the performance by
5.5% over the UpDown baseline. In the zero-shot setting,
compared to object-features, our Spatial Image Patch fea-
tures perform equally well on VQA, and are better on VQA-
CP, and are also more annotation efficient. In GQA, the zero-
shot performance is not as competetive when compared to
our performance on VQA and VQA-CP. We attribute this
to the need for understanding spatial relationships answer
GQA questions. Such questions are infrequent in our syn-
thetic training data since human-annotated captions do not
contain detailed spatial relationships among objects. The de-
velopment of self-supervised techniques to perform spatial
reasoning is an interesting future direction for research.

Fully Supervised Question Answering In the fully su-
pervised setting, the performance of our methods ap-
proaches SOTA methods. However, our methods are signif-
icantly annotation-efficient as we only adopt COCO cap-
tions without dense object annotations during pre-training
or training. In GQA, the Encoder model performs on par
with MAC (2018) and BAN (2018), which unlike us, use
object relationship annotations. This suggests that pyrami-
dal features and the cross-modal transformer encoder layers
can learn spatial relationships between image regions.

Impact of each question-generation technique In Ta-
ble 4 we can observe the effect of different question genera-
tion techniques. All models use spatial image patch features.
QA-SRL based questions and the SWA-Loss contribute the
most towards gains in performance, and the paraphrased
questions provide larger linguistic variation.

Effect of Spatial Pyramids We study the effect of pro-
gressively increasing the number of overlapping spatial im-

?In all tables underline implies unsupervised best, and bold im-
plies overall best. Baselines are trained on VQA/VQA-CP/GQA
training data and our models on synthetic self-supervised data.



Datasets Template Template+ P& B QASRL All
= VQA-v2 26.2 28.5 31.1 414
2 VQA-CP 25.7 27.1 33.8 40.2
= GQA 11.6 14.8 189 311
g VQA-v2 32.5 34.8 40.3 47.1
8 VQA-CP 31.2 33.6 39.8 46.8
5 GQA 18.5 23.6 214 33.7

Table 4: Effect of different training data sources on ZSL val-
idation accuracy. P&B Paraphrasing and Back-translation.

Datasets {1} {13} {1,35} {1,357} {13579}

= VOQA-v2 188 367 40.1 414 39.8
2 VQA-CP 197 359 39.7 40.2 384
> GQA 113 245 29.5 311 29.3
5 VQA-v2 264 426 443 47.1 46.2
S VQA-CP 277 43.1 452 46.8 454
5 GQA 153 28.8 30.9 33.7 31.2

Table 5: Effect of the number of spatial patches on ZSL vali-
dation accuracies with UpDn and our Encoder. {3,5} implies
division of the image into a 3x3 and 5x5 grid of patches.

age patches (i.e. decreasing the patch size). It can be ob-
served in Table 5 that an optima exists at grid-size of 7x7
after which the addition of smaller patches is detrimental.
Similarly, only using patches of large size does not allow
models to focus on specific regions of the image. Thus a
trade-off exists between global context and region-specific
features. We observe a minor improvement of 0.01-0.3% by
extracting features from ResNet-101 compared to ResNet-
50. Removing visual position embeddings has a significant
effect on performance, with a drop of 4.6-8% on average, in
both ZSL and FSL settings for VQA and GQA.

Effect of different Pre-training Tasks Table 6 shows the
effect of different pretraining tasks on the downstream zero-
shot VQA task. We need the SWA task, as it is used to per-
form the zeroshot QA task. The combination of MLM, MQA
and ITM, all of which need image understanding, shows im-
proved performance on the downstream task, indicating bet-
ter cross-modal representations.

Effect of size of Synthetic Train set Figure 1 shows the
learning curve of our Encoder model for the zeroshot setting
trained on our synthetic Q-A pairs. The performance stag-
nates after a critical threshold of 10° samples is reached.
Our experiments also suggest that randomly sampling a set
of questions for each image per epoch leads to a +4% gain,
as compared to training on the entire set.

Error Analysis Our ZSL method is pretrained on longer
phrases and hence tends to generate answers with more de-
tails, such as “red car” instead of “car”. Although the SWA
loss mitigates this to an extent, by creating a distribution
over the shorter phrases, the bias is not completely removed.
On automated evaluation, we observe that for 42% of ques-
tions the target answer is a sub-phrase of our predicted an-
swer. Manual evaluation of 100 such samples shows that
87% of our detailed predictions are also plausible answers.

MLM+ MQA+ MLM+MQA MLM+T

Datasets SWA SWA SWA +SWA SWA All
VQA-v2 39.1 42.4 42.0 45.6 44.7 46.2
VQA-CP 38.3 41.5 412 449 43.6 454
GQA 254 27.8 26.6 29.7 28.9 31.2

Table 6: Effect of different Pre-training tasks on the ZSL
validation accuracies for the Encoder model.

Aecuracy.

- GQA
20 . VQAV2
+  VQA-CP

104 5+%10* 105 5*10° 105 5+10°
Samples

Figure 5: Learning Curve showing validation accuracy vs.
the number of synthetically generated training samples.

This not only shows the relevance of learning from captions,
but also quantifies the bias towards short “true” answers in
human-annotated benchmarks, demonstrating the need for
better evaluation metrics that do not penalize VQA systems
for producing descriptive accurate answers.

In the fully supervised setting, we either finetune our pre-
trained QA classifier with the SWA Loss, or train a separate
feedforward layer for the task. The pre-trained QA classi-
fier continues to predict longer phrases as answers, leading
to a drop in accuracy. The feedforward layer (trained from
scratch) performs better (+6%), indicating our Encoder cap-
tures relevant features necessary to generalize to the bench-
mark answer-space. Note that we do not use object annota-
tions during training, unlike existing methods.

7 Discussion and Conclusion

Prior work (Chen et al. 2019) has effectively demonstrated
that the use of object bounding-boxes and region features
leads to significant improvements on downstream tasks such
as captioning and VQA. But little effort has been dedicated
towards developing alternative methods that can approach
similar performance without relying on dense annotations.
We argue that annotation-efficiency, self-supervised learn-
ing, and data synthesis techniques could be the pathway for
the V& L community towards a “post-dataset era'”. In this
work, we take a step towards that goal. We present a frame-
work for procedural synthesis of Q-A pairs, and introduce
the new task of zero-shot visual question answering, where
benchmark datasets can be used only for evaluation. We use
spatial pyramids of patch features to increase the annota-
tion efficiency of our methods. Our analysis demonstrates
problems with existing VQA evaluation metrics. To mitigate
this, we introduce the subphrase weighted answer loss. Our
method surpasses previous supervised methods on VQA-CP.

'A. Efros, Imagining a post-dataset era, ICML’20 Invited Talk.



Ethical Considerations

Captions, although also collected from human annotators,
have been shown to have a lesser degree of subjectivity, am-
biguity, and linguistic biases than VQA datasets, due to the
design of annotation prompts that limit the introduction of
these biases. Our work has demonstrated that procedurally
generated annotations can help mitigate linguistic priors in
VQA models (Table 1). Hendricks et al. find that gender bias
exists in image-captioning datasets and is amplified by mod-
els, further research in self-supervised data synthesis could
potentially help alleviate such social biases.
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